
A methodology for designing form-based decision support systems

Jen-Her Wua,*, Her-Sen Doonga, Ching-Chang Leeb,
Tse-Chih Hsiac, Ting-Peng Lianga

aDepartment of Information Management, National Sun Yat-Sen University, Hsi-Tze Wan, Kaohsiung 80424, Taiwan
bDepartment of Information Management, Shu-Te Institute of Technology, Yen Chau, Kaoshiung County, Taiwan

cDepartment of Business Management, Mei-Ho Institute of Technology, Neipu, Ping Tung, Taiwan

Received 1 May 2002; accepted 26 August 2002

Abstract

Form-based decision support systems (FBDSS) are special types of information systems that use forms to present

information for decision-making. Paper forms that are often used for collecting and disseminating information in offices are

natural bases for eliciting user information requirements. They are particularly useful for user-oriented systems, such as

executive information systems and DSS. The paper presents a methodology that uses factoring and synthesis to process

knowledge involved in forms for designing FBDSS. The resulting system allows flexible creation and modification of

computer-generated forms useful for decision-making. A prototype system illustrating the method is described.

D 2002 Elsevier Science B.V. All rights reserved.

Keywords: Form-based decision support systems; Form management; System analysis and design; End-user computing

1. Introduction

A form is a way of organizing and presenting data.

Most organizations use forms to present data and to

communicate with their affiliated entities in the office

environment. Previous research has indicated that

forms are the central structural abstraction for data

collection, storage, retrieval and updating in an office

[9,10,13]. Data in forms are often well structured and

can easily be formalized [3]. Therefore, forms are an

important means to designing and developing user-

oriented information systems, such as executive infor-

mation systems (EIS) and form-based decision sup-

port systems (FBDSS) [6].

Previous research has studied several approaches to

using business forms for analyzing office activities and

determining information requirement. For instance,

Tsichritzis [10] introduced the concept of form types,

form templates and form instances when forms are

used to integrate different facilities and services in

office information systems. Shu et al. [8,9] proposed

using forms to specify system requirements. Others

investigated the use of forms to generate entity rela-

tionship diagrams, determine functional dependencies

and present information [1–5,8,9,11,12]. Table 1

shows a summary of their work.

In addition to database design and system analysis,

forms are also useful for information presentation in

decision support systems [6]. To meet the dynamic

needs of decision makers, DSS must have flexibility

in information presentation, which includes flexibility

in adding new data items, modifying data items,

0167-9236/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0167-9236(02)00145-8

* Corresponding author. Tel.: +886-7-5252000x4722; fax:

+886-7-5254799.

E-mail address: jhwu@mis.nsysu.edu.tw (J.-H. Wu).

www.elsevier.com/locate/dsw

Decision Support Systems 36 (2004) 313–335

changing the layout of existing forms or creating an

entirely new form. A form-based DSS organizes the

result in tables or in more general lists that can easily

be scrolled. Traditionally, forms are predefined at the

system analysis and design stage when the software is

developed. Rewriting system code is necessary when

a new form is desired or an old one needs to be

revised. This is inconvenient, expensive and signifi-

cantly restricts the flexibility of a system.

One way to overcome the problem is to develop

systems that allow users to create and modify their

forms conveniently. In other words, end users can

handle some of their own information reporting needs

through ad hoc form construction without the inter-

vention of computer professionals. This flexibility is

particularly useful in developing executive informa-

tion systems and user-oriented decision support sys-

tems when ad hoc analysis is essential [8,9,10,13].

In this paper, a methodology for designing FBDSS

is presented. A prototype system capable of providing

flexible two-dimensional form presentations of numer-

ical data, called Flexform, is implemented for demon-

stration. Flexform was designed for the Department of

Transportation of Taiwan Government (DTTG) to

support the analysis of traffic accidents.

Although report generation is not new, most existing

approaches require that the user have knowledge of the

database. The role of the system is to organize the

specified data into tables. For instance, Microsoft

ACCESS provides the functions of Auto Report,

Report Wizard and Design View that allow end users

to manipulate their one- and two-dimensional forms,

respectively. Auto Report and Report Wizard allow end

user to specify the data source and follow the instruc-

tions to create a fixed one-dimensional form. Design

View provides more sophisticated capabilities, such as

allowing creation of subreports within a report and

manipulation ofmore complex two-dimensional forms.

However, end users need to be able to define data

sources and understand the database schema before

they can integrate multiple tables or aggregate the

desired data. This is difficult for most users who may

not have professional database knowledge on its

schema. Our approach embeds more semantic knowl-

edge in forms in the factoring and generalization

process to greatly simplify the ad hoc reporting process.

The remainder of the paper is organized as follows.

Sections 2 and 3 define various concepts associated

with form management, including a form, template

and meta-template. Section 4 describes the factoring

and synthesis of forms. Section 5 presents the method-

ology for designing FBDSS. Section 6 shows the

Flexform system and an example to illustrate the

process of flexible form generation. The last section

concludes the paper.

2. Characteristics of forms

A form can be decomposed into certificating,

extensional, intensional and descriptive parts [1].

The certificating part contains data related to the

formality of the form, such as data of issuance,

stamps, marks, identifier, serial number or signatures.

The extensional part contains cells that must be filled

in with values. The intensional part contains headings

that indicate the meanings of the values in different

cells. The descriptive part contains instructions or

rules for filling out the extensional part. The inten-

sional and extensional parts are often highly inter-

Table 1

Previous research in using forms for information system design

Research Objective Result or system

output

Tsichritzis [10] To integrate

different facilities

and services in

Office Information

Systems

(1) A facility for the

specification and

implementation of

automatic form

procedures

(2) Techniques for

the analysis of

office flow

Shu et al. [9] To decompose

business functions

into meaningfully

(1) A form

processing

language

connected form

processes for office

automation

(2) A business

procedure definition

language

Batini et al. [1] Database analysis

and design

Generate entity

relationship diagrams

from forms

Choobineh et al.

[4,5]

Database analysis

and design

Generate entity

relationship diagrams

from forms

Choobineh and

Venkatraman [3]

Database analysis

and design

Determine functional

dependencies

Wu [11,12] Flexible form

presentation

Facilitate flexible

form presentation

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335314

connected. In fact, the intensional part contains indi-

ces of the extensional part. A combination of the

intensional and extensional parts is called an area.

The structure of a form may be analyzed by its

entities, relationships and associated attributes. In Fig.

1, for instance, the personal record in a traffic accident

involves entities, such as person, vehicle and accident.

Entities can have relationships. For instance, ‘‘A

person drives a vehicle’’ and ‘‘Vehicles have acci-

dents’’ are relationships. Both entities and relation-

ships may have attributes. A person may have name,

birth date, gender and education as its attributes.

Accident may have time, place, damage and other

attributes. Attributes may be simple or composite.

An attribute with no subattribute is called a simple

attribute (or elementary property), whereas an attribute

having other attributes as its subattributes is called a

composite attribute. For example, gender is a simple

attribute, but birth date is a composite one, because the

birth date has day, month and year as its subattributes.

Each attribute is defined on a particular domain

and can have values. For example, age may be defined

on a domain of 0–200 years and gender is defined as

either male or female. Depending upon the nature of

their domains, attributes may be nominal or non-

nominal. A nominal attribute has categorical values,

whereas a nonnominal attribute has numerical values.

For example, gender is nominal because its value is

either male or female, while age is nonnominal. If age

is divided into several categories (such as adult, child

and infant) instead of using the actual year and month,

then it becomes nominal.

An attribute of interest to the user is a field. A form

is a collection of related fields that are organized to

meet the user’s information needs. When designing a

form, fields may be grouped by certain similarities

among attributes. One way is to group fields based on

whether they allow multiple values in a single form.

For example, gender is single-valued in a form of

personal record, but education can be multiple-valued,

which includes data from primary school to the highest

degree. In Fig. 1, the single-value attributes are pre-

sented in separate lines, whereas the multiple-value

attributes, including occupation, education, vehicle

type and driver’s license information, are grouped into

a table. Data in a form can be displayed in parametric

texts or in tables. Parametric texts are a set of texts with

fields to be filled in with proper values. For example,

‘‘we certify that Mr. _____ was born on _____,’’ is a

set of parametric texts containing two fields.

A table includes headings and cells. The headings

are indices or classifiers of the value in the cell. In a

two-dimensional form, row and column headings

show the meaning of row and column attributes,

respectively. Fig. 2 is a sample multi-dimensional

form, with region as its row headings and a combi-

nation of the driver’s alcohol test and gender as

column headings. A cell is a repository of attribute

Fig. 1. Part of a personal record in a traffic accident report.

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335 315

values. It may be filled with numbers or mathematical

functions that can generate values.

Headings may be simple or composite. A simple

heading has a simple attribute. For example, if gender

is used as a column heading in a tabular form, it is a

simple heading with two categories, male and female.

A composite heading involves composite attributes

that may be a single composite attribute, such as the

row headings (region) in Fig. 2, or a combination of

more than one simple attribute, such as the column

headings (a combination of alcohol test and gender) in

Fig. 2. Headings may be classified into different

types. For example, we may define Accident items

as a type that represents the relationship of attributes

associated with car accidents in a hierarchy. For

instance, the column heading of Fig. 2 is an element

of Accident items. Types are useful for generalizing

headings.

3. Levels of abstraction

In addition to grouping related attributes into a

table, forms can also be generalized at three differ-

ent levels: form instance, form template and meta-

template.

(1) Form instance: a special instance of a form

template, with all cells being instantiated with

proper values. It is the most common form we

see. In this research, we use ‘‘form’’ and ‘‘form

instance’’ interchangeably.

(2) Form template: the skeleton of a form, in which

attribute values are removed and may be

substituted by other proper ones. The example

in Fig. 3 shows the relationship between a form

and its template. A template may contain head-

ings, fixed texts, operation expressions, graphics

and other fields that are not stored in the

database.

(3) Meta-template: a further abstraction of templates

by replacing their headings with associated types.

For instance, the column and row headings of the

form templates shown in Fig. 3 can be generalized

into a meta-template of Accident items because the

attributes (including vehicle type, education,

casualty and vehicle motion) belong to the types

of Accident items. A meta-template can generate

Fig. 2. A two-dimensional form.

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335316

multiple templates. A template can generate

multiple forms.

4. Factoring and synthesis of forms

Based on different levels of abstraction, forms can

be manipulated and managed through a factoring and

synthesis process, as shown in Fig. 4 (adapted from

Ref. [7]). Factoring is a process of aggregation and

generalization. It builds templates and meta-templates

from existing forms. Synthesis is a process of special-

ization and instantiation. It constructs forms from

meta-templates and templates.

The first step in factoring is form analysis that

extracts form headings to build a template. Cell values

in business forms are removed from tables to separate

templates and their affiliated data (F1). The templates

are then generalized into meta-templates (F2). A

structure can be built from the headings. Data are

stored and indexed by the heading structure in a

database for efficient retrieval in the future.

Construction of meta-templates is based on type

similarities among headings. In Fig. 4, for instance,

the column and row headings of the left-most template

are the causes of accidents and the regions where

accidents occurred. The column and row headings of

the second template from the left are the driver’s

education and the regions where the accident oc-

curred. Because both row headings of these two

templates are geographic regions used for classifica-

tion and the column headings are items used for

observation and analysis of accidents, they share the

same meta-template. The column headings are of

Accident items and row headings are of geographical

Region. Here, Accident items and Region are two

types. A meta-template of Region and Accident items

can be defined.

The synthesis process constructs forms from meta-

templates and templates. When a form is needed, the

user chooses a proper meta-template to build a tem-

plate by defining the row and column headings (S1).

Once the template is built, the system retrieves data

from the database and maps data into the template

based on the specification of the template. A form is

constructed (S2).

In the actual application, the synthesis process

includes two stages: template definition and informa-

Fig. 3. Meta-template, template, form and their relationship.

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335 317

tion display (see Fig. 5). At the template definition

stage, the user chooses a meta-template and then

defines row and column headings to build a prelimi-

nary template from the requirement. The preliminary

template may be edited to meet the exact information

needs, if necessary. At the information display stage,

the system generates SQL queries to retrieve relevant

data from the database and then fill in the template

properly for information presentation.

5. Methodology for designing form-based DSS

The processes of factoring and synthesis suggest a

method for designing form-based DSS. The method

includes two major stages: design and application (see

Fig. 6). The design stage is the process of factoring

that includes form analysis, heading structure design,

meta-template design and database design. Once the

meta-template and database are available, the system

can be applied to construct forms by the synthesis

process. This section presents major modules of the

method and corresponding algorithms.

5.1. Form analysis

The objective of form analysis is to find major

attributes for designing the DSS. Each field in the

form needs to be examined carefully to identify and

separate different parts and areas. Given a set of

business forms, the first step is to decompose them

into their structure and affiliated data. For each form, a

data glossary is produced to describe the attributes

(i.e., fields) contained in the form, their elementary

Fig. 4. Factoring and synthesis of forms.

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335318

Fig. 5. Processing procedure of the flexible form presentation.

Fig. 6. Methodology for development.

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335 319

properties and abstraction hierarchies. The process of

form analysis is recursive, as described below:

Begin

For each form

(1) Separate different parts (descriptive parts,

extensional/intensional parts)

(2) Identify areas and subareas, assign a

name to each of them

(3) For each area, repeat

(3.1) Extract entity

(3.2) Analyze the attributes of the entity

(3.3) Fill data glossary with attributes and

build attribute hierarchies

(3.4) Save attributes, entities and attribute

hierarchies.

Until all areas are examined.

Until all forms are examined

Merge the data glossary and resolve conflicts

End of form analysis

To elaborate the procedures, forms are analyzed to

identify their parts (descriptive parts and extensional/

intensional parts), areas and attributes. We use the

form in Fig. 7 as an example. It has parametric text

and tables. The extensional/intensional part of the

form has the following fields in the parametric text:

‘‘date of accident’’, ‘‘place of accident’’, ‘‘casualty’’,

‘‘number of fast lanes’’ and ‘‘speed limit.’’ The table

has two main areas: road conditions (area 1.1) and

traffic facilities (area 1.2).

The second step focuses on defining areas in the

form. The process of identifying areas is recursive.

The fields describing the same type of concept should

be grouped into one area. It is common that the fields

in a hierarchical structure have common properties.

Each area must have a name and an identification

number. In Fig. 7, the field, traffic facilities, is a table

consisting of a group of subareas, such as ‘‘traffic

lights’’, ‘‘road division’’ and ‘‘traffic signs’’. If we

consider the whole form as an area, label it as Area1

Fig. 7. Traffic accident record (partial).

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335320

and name it as traffic accident. Area1 can be further

divided into several subareas, labeled as Area1.1

(named road conditions) and Area1.2 (named traffic

facilities), respectively.

The third step is to elicit attributes from the form.

To do so, we need to extract concepts from the

identified parts and areas. As shown in Fig. 7, the

parametric text includes attributes, such as date of

accident or place of accident. In the table, the field

names are attributes, such as road conditions and

traffic facilities. Next, we check whether an attribute

is simple or composite. In general, the attribute

extracted from the parametric text can be further

decomposed. For instance, the attribute, date of

accident, in Fig. 7 is normally represented as

year–month–day. It may be further decomposed

into three attributes: year, month and day. This

decomposition allows data to be analyzed in more

detail.

To describe the resulting attributes, a data glos-

sary of all attributes must be built. It includes code,

name, areas, description, instances and synonyms as

shown in Table 2. Description, instances and syno-

nyms are useful in having a clear understanding of

the meaning and role of each attribute in an appli-

cation. Normally, a system has more than one form.

Therefore, data glossaries obtained from different

forms are integrated to derive a complete data

glossary. During the process of integration, restruc-

turing is often needed. Attention must also be paid to

handle naming conflicts and redundancy in areas and

attributes.

5.2. Heading structure design

After defining all attributes, it is necessary to find

their relationships. The resulting structure can be used

as headings for constructing forms and indices for

organizing data for efficient storage and retrieval. In

this step, similar items are grouped by aggregation or

generalization to build hierarchies. The procedure of

heading structure design is shown as follows. The

algorithm that constructs hierarchies automatically is

shown in Appendix A.

Heading structure design

Begin

Initialize a data group

For each form

For each item on the column heading and

row heading Do

If the item can be classified into one of the

data groups

Then add it to the data group and

construct the hierarchical relationship

among the items

Else build a distinct data group

Until all items are examined

Until all forms are examined

End of heading structure design

In designing the heading structure, aggregation and

generalization are utilized to identify hierarchical

relationships within each data group. Aggregation

allows several attributes of different nature to be

combined into a higher-level concept. In Fig. 8, the

concepts, such as slow-lane pavement, fast-lane pave-

ment, lane condition and damage can be aggregated

into a higher-level concept, called road conditions.

The aggregation of several attributes creates a com-

posite attribute.

Generalization allows several concepts of similar

nature to be represented by a higher-level concept. As

shown in Fig. 9, the concepts of bus, cargo truck,

truck and full-size trailer are similar in that they are

vehicles and, hence, can be generalized to a higher-

level concept, called vehicle type. The results of

aggregation and generalization may be recorded under

‘‘aggregation of’’ and ‘‘generalization of’’ in the data

glossary (see Table 2).

In the DTTG project, we applied aggregation and

generalization to construct the hierarchical structure

by analyzing and integrating the attributes resulted

from form analysis. Three hierarchical structures are

constructed after investigating the data glossaries and

interviewing end users: time, region and accident

items. Time indicates when the accident occurred.

Region indicates the geographic areas in Taiwan.

The Accident items show the circumstances and

facilities associated with the accident, such as the

weather conditions, the traffic facilities and road

conditions.

Figs. 10 and 11 are the hierarchical structures of

Region and Accident items. Region has four levels.

The first level is Taiwan Island, followed by province/

city, county and township. The structure of Accident

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335 321

Table 2

Partial data glossary of Fig. 2

Form: personal record in traffic accident

Code Name Concept description Instance Synonyms Aggregation of: Generalization of: Par. T

D001 Name Name of the

person involved

John T1

D002 Gender Gender of the

person involved

Male T2

D003 Birth date Birth date of the

person involved

1968/07/23 Year, month, day T3

D004 Year Year of the

birth date

1998 D003 T3

D005 Month Month of the

birth date

07 D003 T3

D006 Day Day of the

birth date

23 D003 T3

D007 Occupation Occupation of the

person involved

Teacher T4

D008 Driving under

the influence

of alcohol

Test drive under

the influence of

alcohol

Alcohol test,

after observation

T5

D009 Alcohol test Result of the

alcoholic test

Over limit,

under limit

D008 T5

D010 After

observation

Driver’s observed

alcoholic condition

Obviously drunk,

refused to be tested,

not tested

D008 T5

. .

. .

D301 Accident date Date of accident 1998/11/12 Year, month, day T11

D302 Year Year of the

accident date

1998 D301 T11

D303 Month Month of the

accident date

11 D301 T11

D304 Day Day of the

accident date

22 D301 T11

D305 Accident place The place where

an accident

occurred

Province/city,

county/city,

township

T12

D306 Province/city The province/city

of the accident place

Taiwan, Taipei D305 T12

D307 County/city The country/city

of the accident place

Pingtung D305 T12

D308 Township The township of the

accident place

Wantan D305 T12

D309 No. of fast lane No. of fast lane at the

accident place

2 T13

D310 Speed limit Speed limit at the

accident place

96 km T14

. .

D312 Road

conditions

Road types and

conditions at the

accident place

Slow-lane pavement,

fast-lane pavement,

lane condition, damage

T15

D313 Slow-lane

pavement

The condition

of the slow lane

at the accident place

Paved, not paved D312 T15

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335322

items has seven levels. For instance, no passing is an

attribute at the seventh level. If we trace up from this

attribute, the attributes at six different levels are

multiple fast lanes, between fast lanes, lane division,

road division, traffic facilities and traffic accident,

respectively.

5.3. Meta-template design

The heading structures constructed previously

serve as the basis for designing meta-templates and

databases. The purpose of meta-template design is to

simplify and automate the process of form generation.

The procedure is shown as follows. An algorithm for

automating the meta-template construction is de-

scribed in Appendix B.

Begin

Initialize a meta-template

For each template or form

(1) Build meta-templates by replacing the

column and row headings with the name of

their hierarchical structures

(2) If the meta-template already exists, drop

the redundant one. Otherwise, save the new

meta-template

Until all forms or templates are examined

End of meta-template design

Table 2 (continued)

Form: personal record in traffic accident

Code Name Concept description Instance Synonyms Aggregation of: Generalization of: Par. T

D314 Fast-lane

pavement

The condition

of the fast lane at

the accident place

Paved with asphalt,

paved with semen

D312 T15

. .
D317 Traffic facilities The traffic facilities

around the

accident place

Traffic light,

road division,

traffic signs

T21

D318 Traffic light The traffic light at the

accident place

Type,

working

D317 T21

D319 Road division The road division at

the accident place

Central, lane D317 T21

D320 Lane division The lane division at

the accident place

Between

fast lanes,

between fast and

slow lanes, road

side line

D317 T21

D321 Traffic signs The traffic signs at the

accident place

D317 T21

. .

Fig. 8. An example of aggregation.

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335 323

The column and row headings of the left-most

template in Fig. 4 are the causes of accidents and

the regions where the accidents occurred, respectively.

Similarly, the column and row headings of the second

template from the left are drivers’ educational levels

and the regions where the accidents occurred. Because

both row headings of these two templates belong to

the type of Region and both column headings belong

to the type of Accident items, the meta-template has

Accident items as its column heading and Region as its

row heading. Fig. 12 shows four meta-templates

defined in the DTTG project from the forms used

by the government agency: Region/Accident items,

Accident items/Accident items, Time/Accident items

and Region_Accident items/Accident items.

5.4. Database design

To maximize the flexibility in form construction,

data must be decomposed and stored at the elementary

level. To accomplish this goal, data are indexed by the

heading structures built in the previous step. For

instance, if there exist n distinct types of heading

structures (data type 1. . .n), we can define the main

database schema as {data type1, data type2, . . ., data
type_n, data value}. The data length of each attribute

in the above schema is the maximum number of layers

in the heading structure.

In our prototype implementation, there are three

heading structures: Time, Region and Accident items.

Thus, the main database schema can be represented as

follows: Time, Region, Accident items, value. The

number of layers for the heading structure of Time,

Region, and Accident items are two, four and seven,

respectively. Assuming that each layer can be repre-

sented in two decimal digits and Value can be repre-

sented in eight decimal digits, the data lengths of the

attributes will be 4, 8, 14 and 8, respectively. Because

the database design is not the focus of this research,

details of schema design and normalization are not

discussed.

5.5. Form construction

The major function of the application phase is to

construct forms from meta-templates and templates.

To allow end users to create their own forms easily,

it is necessary to automate the application process.

Fig. 10. The hierarchical structure of region.

Fig. 9. An example of generalization.

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335324

The following are procedures for automatic form

construction.

(1) Template construction

(1.1) Select a suitable meta-template

(1.2) Specify the column and row headings and

then display them in a spreadsheet environment

(1.3) Define the mathematical functions in the

cell and edit the layout, if necessary

(2) Form display

(2.1) BuildSQLqueriesbasedon the chosen tem-

plate and execute the queries to retrieve the data

(2.2) Maps the resulting data into the template

and performs necessary operations as specified

in the template

In our implementation, users should determine

what data they need and how the data should be

displayed in order to choose a suitable meta-template

in the template construction phase. They then specify

the row and column headings using the structures

constructed in the phase of heading structure design.

The selected items will be transmitted to an editing

area for further operational specification and template

editing. When users perform form display, the system

automatically generates the necessary SQL queries

based on the constructed template, performs query

execution and maps the resulting data to the template.

The resulting form can be either viewed on the screen or

printed from the printer.

6. Flexform: a prototype implementation

To demonstrate the feasibility of the proposed

methodology, a prototype system, called Flexform,

has been developed. Flexform was implemented in an

environment that integrates a relational database man-

agement system (RDBMS) and spreadsheet model

Fig. 12. Four templates in the DTTG project.

Fig. 11. The hierarchy of accident items.

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335 325

management system (SMMS). The development tools

used were Microsoft Excel, Delphi and Microsoft

SQL Server. Fig. 13 depicts Flexform’s architecture,

which contains four modules: template construction,

query construction, query execution and form display.

The template construction module is used to create

templates from meta-templates. The query construc-

tion and query execution modules help construct the

needed SQL queries and retrieve data from RDBMS.

The form display module combines the template and

data to build forms.

To show how the user applies the system to

generate forms, the example of traffic accident

analysis described previously was implemented. In

the example, Flexform has three distinct heading

structures: Time, Region and Accident items. In addi-

tion, the system has four meta-templates: Region/

Accident items, Accident items/Accident items, Time/

Accident items and Region_Accident items/Accident

items. They are shown in the left-top, right-top, left-

bottom and right-bottom corners in Fig. 14, res-

pectively.

Fig. 13. The architecture of Flexform.

Fig. 14. Meta-template of Flexform system.

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335326

Fig. 15. The desired form.

Fig. 16. Specifying column items.

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335 327

Fig. 17. Construction of the template.

Fig. 18. Form constructed by Flexform.

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335328

Suppose that the user needs to generate a form that

compares the frequency of accidents by the driver’s

age and experience, as shown in Fig. 15. The user

may choose the meta-template located on the right-top

of Fig. 14 to start with.

Once a meta-template is chosen, the system pops

up a window (Fig. 16) that allows the user to specify

row and column headings of the template. After a

column heading is chosen (i.e., Accident items in this

case), the system pops up a new window with a data

structure containing the Accident items. The user can

use the mouse to mark and move the needed items

from the source window (the left-hand side window in

Fig. 16) to the destination window (the right-hand side

window in Fig. 16). A similar procedure can be used

to specify row headings.

The template construction module records the row

and column items chosen by the user and sends them

to the editing area for possible refinement. Users may

polish the format of the preliminary template and save

the final version (see Fig. 17). Following the template

construction is the form display function that retrieves

data from the database and fills into the template. First,

the query construction module is triggered to generate

SQL queries. Then, Flexform executes SQL, performs

the necessary cross-referencing and calculations to

retrieve appropriate data, and then saves them into a

temporary file. Finally, the form display module gen-

erates another set of SQL queries to feed the data from

the temporary file into the template. The functions

defined in the template are automatically executed.

That is, only the result is shown in the final form. For

instance, fields whose values must be derived from the

values of other fields are calculated automatically. Fig.

18 shows the resulting form built by flexform.

7. Conclusions

The paper presents a methodology for designing

form-based DSS. The method is based on the concept

of factoring and synthesis to simplify form manage-

ment. It includes two major phases: one is to derive

meta-templates and design databases from existing

forms; the other applies meta-templates to create

new forms for application. A prototype system has

also been implemented to demonstrate the feasibility

of the method.

The contribution of the paper is three-fold. First,

the methodology can alleviate the difficulty in flexible

presentation of numerical data, especially when fre-

quent change is necessary. It integrates several con-

cepts and methods (such as factoring, synthesis,

aggregation and generalization) into the design proc-

ess to provide flexibility necessary for end users to

create their own forms easily. Second, the method

allows a form skeleton and its associated data to be

managed separately. This helps the construction of

form-based DSS to better use existing data in the

database. The user may specify different templates

and fill them with data in the current database. It also

provides a greater possibility for reusing tables and

other presentation modules. Finally, the method

intends to integrate semantic knowledge to support

form generation. This makes it different from existing

methods and has the potential of greatly improving

the capabilities of ad hoc analysis and on-line analytic

processing in DSS.

This work is the beginning of a line of research

focused on flexible form management in DSS. Future

research directions are abundant. For instance, in

order to increase the applicability of flexible forms,

methods must be developed to allow forms to be

compatible with different data models and different

database systems. This may include integration of

models and solvers to manage form models, as

mentioned in Ref. [6]. Other issues include integration

with other systems to expand system capabilities and

evaluation of system productivity and user satisfac-

tion. Applications to improve existing report gener-

ation functions, such as the Report Wizard in

Microsoft Access, will also have significant value.

Acknowledgements

We would like to thank anonymous referees for

their helpful comments. This research was partially

supported by the National Science Council of Taiwan

under the grant NSC87-2416-H-110-023. Many con-

cepts embodied in this work were initially kindled by

a decision support system project from the Taiwan

Provincial Government. The implementation of the

system was carried out at the Software Research and

Development Center (SR and DC), College of

Management, National Sun Yat-Sen University.

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335 329

Appendix A. Algorithm for automatic construction of hierarchies

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335330

Appendix B. Algorithm for meta-template construction

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335 331

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335332

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335 333

References

[1] C. Batini, B. Demo, A. Di Leva, A methodology for concep-

tual design of office data bases, Information Systems 9 (3/4)

(1984) 251–263.

[2] T. Catarci, M.F. Costabile, S. Levialdi, C. Batini, Visual query

systems for databases: a survey, Journal of Visual Languages

and Computing 8 (1997) 215–260.

[3] J. Choobineh, S.S. Venkatraman, A methodology and tools for

derivation of functional dependencies from business form,

Information Systems 17 (3) (1992) 269–282.

[4] J. Choobineh, M.V. Mannino, J.F. Nunamaker, B.R. Konsyn-

ski, An expert database design system based on analysis of

forms, IEEE Transactions on Software Engineering 14 (2)

(February 1988) 242–253.

[5] J. Choobineh, M.V. Mannino, V.P. Tseng, A form-based ap-

proach for database analysis and design, Communications of

the ACM 35 (2) (February 1992) 108–120.

[6] C.W. Holsapple, A.B. Whinston, Decision Support Systems:

A Knowledge-Based Approach, West Publishing, St. Paul,

MN, 1996.

[7] T. Isakowitz, S. Shocken, H.C. Lucas Jr., Toward a logical/

physical theory of spreadsheet modeling, ACM Transactions

on Information Systems 13 (1) (January 1995) 1–37.

[8] N.C. Shu, FORMAL: a form-oriented, visual-directed appli-

cation development system, Computer (1985) 38–49.

[9] N.C. Shu, V.Y. Lum, F.C. Tung, C.L. Chang, Specification of

forms processing and business procedures for office automa-

tion, IEEE Transactions on Software Engineering SE-8 (5)

(September 1982) 499–512.

[10] D. Tsichritzis, Form management, Communications of the

ACM 25 (5) (July 1982) 453–478.

[11] J.H. Wu, SDSS basis and application—a case study of the

Taiwan Provincial Government, Journal of Chinese Institute

of Industrial Engineering 13 (3) (1996) 203–213.

[12] J.H. Wu, A visual approach to end user form management,

Journal of Computer Information Systems 41 (1) (Fall 2000)

31–39.

[13] S.B. Yao, A.R. Hevner, Z. Shi, D. Luo, FORMANAGER: an

office forms management system, ACM Transactions on Of-

fice Information Systems 2 (3) (July 1984) 235–262.

Jen-Her Wu is Professor of Information

Management at the National Sun Yat-

Sen University. Prior to his doctoral

study at the University of Kentucky, he

received a BS degree in Industrial

Design, earned an MS degree in Com-

puter Science and worked as an engineer

and manager in the manufacturing

industry. Professor Wu teaches a variety

of information management courses. His

current research interests are in the areas

of information systems development and management, human

computer interaction and knowledge management. His research

articles span such diverse journals as Information and Management,

Expert Systems, Knowledge Acquisition, Decision Support Sys-

tems, Simulation Digest, International Journal of Expert Systems:

Research and Applications, International Journal of Intelligent

Systems in Accounting, Finance and Management, Journal of

Computer Information Systems and others.

Her-Sen Doong is an Instructor of Infor-

mation Management at the National Sun

Yat-Sen University in Taiwan, where he

received his PhD degree in Information

Management. His research interests

include electronic commerce and Inter-

net communications. His papers have

been published in the International Jour-

nal of Electronic Commerce and several

conference proceedings.

Ching-Chang Lee is a lecturer of

Information Management at Shu-Te

University, Taiwan. He received his

doctoral degree of information man-

agement from the National Sun Yat-

Sen University (Taiwan, ROC). His

primary research interests include

decision support systems, electronic

commerce and information systems

development.

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335334

Tse-Chih Hsia is an instructor of Busi-

ness Management at the Mei-Ho Insti-

tute of Technology. In the meantime, he

is studying for his PhD degree in the

Department of Information Manage-

ment at National Sun Yat-Sen Univer-

sity. His areas of research include the

information systems development and

database management.

Ting-Peng Liang is professor of Informa-

tion Systems at the Chinese University of

Hong Kong and the National Sun Yat-Sen

University in Taiwan. Prior to his current

position, he had been the Dean of Aca-

demic Affairs and the Dean of the College

of Management, Director of the Graduate

Institute of Information Management and

Director of the Software Incubator of the

National Sun Yat-Sen University. He was

also the founder of the Pacific Asia Con-

ference on Information Systems. He received his doctoral degree in

Information Systems from the Wharton School of the University of

Pennsylvania and had taught at the University of Illinois and Purdue

University until 1992. His primary research interests include elec-

tronic commerce, decision support systems and strategic applica-

tions of information systems. His papers have appeared in a number

of journals, such as Management Science, MIS Quarterly, Decision

Support Systems and Decision Sciences. He also serves on the

editorial boards of several academic journals.

J.-H. Wu et al. / Decision Support Systems 36 (2004) 313–335 335

	A methodology for designing form-based decision support systems
	Introduction
	Characteristics of forms
	Levels of abstraction
	Factoring and synthesis of forms
	Methodology for designing form-based DSS
	Form analysis
	Heading structure design
	Meta-template design
	Database design
	Form construction

	Flexform: a prototype implementation
	Conclusions
	Acknowledgements
	Algorithm for automatic construction of hierarchies
	Algorithm for meta-template construction
	References

