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Knowledge acquisition is a bottleneck for expert system design. One way to overcome this
bottleneck is to induce expert system rules from sample data. This paper presents Q new induction
approach called CRIS. The key notion employed in CRIS is that nommal and nonnomma! attributes
have different characteristics and hence should be analyzed differently. In the beginning of the
paper, the benefits of this approach are deseribed. Next, the basic elements of the CRIS approach
are discussed and illustrated. 1 his is followed by a series of empirical comparisons of the predictive
validity of CRIS versus two entropy-based induction methods (ACLS and PLSl ). stalistical dis-
criminant analysis, and the back propagation method in neural networks. These comparisons all
indicate thai CRIS has higher predictive validity. The implications of the findings for expert
systems design are discussed m the conclusion of the paper.
(KNOWLEDGE ACQUISITION: RULE INDUCTION; EXPERT SYSTEMS: EMPIRICAL
LEARNING)

1. Introduction

Expert systems (ES) designed to support or replace human experts have drawn con-
siderable attention in the past several years. Business applications have been reported in
areas such as accounting, finance, manufacturing, marketing, taxation, and others (see.
e.g.. Chandler and Liang 1990). In general, evidence indicates that under certain cir-
cumstances expert systems outperform human experts {e.g.. Yu et al. 1979) and can be
used as valuable decision aids {Liang 1988; Turban and Watkins 1986).

The process of developing an ES includes acquiring knowledge from human experts,
representing and organizing the knowledge, storing the knowledge in a knowledge base,
and then applying a deductive inference mechanism {usually called the inference engine)
to the knowledge base for decision making. For most systems, the knowledge acquisition
stage plays a key role in determining the quality of the resulting system. Knowledge
acquisition usually involves eliciting, analyzing, and interpreting the knowledge human
experts use in solving a particular problem, and then transforming this knowledge into
a proper representation. Traditionally, knowledge engineers have played an important
role in this process. They use techniques such as structured interviews and protocol
analyses to elicit knowledge from human experts (called domain e.xperts). The domain
experts formulate their knowledge and the knowledge engineers encode this knowledge
for use by the system (see Kidd 1987 for an introduction to these techniques).

A major problem with this approach is that human experts frequently have difficulty
in articulating their knowledge accurately. Acquisition can be a time-consuming process
and frequently results in inconsistent knowledge bases. To overcome these problems, a
number of researchers have suggested an alternative approach that takes advantage of
inductive inference mechanisms to induce decision rules from data (e.g.. Carter and
Catlett 1987; Greene 1987; Quinlan 1986). Knowledge engineers collect data from pre-
vious decisions, identify key attributes (variables) with the help of domain experts, and
then use an induction program to construct a set of rules for decision making. The core
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of this approach is an inductive algorithm that accepts a set of data as inputs and produces
"If-Then" rules capable of interpreting the data set. Compared to the traditional approach,
inductive knowledge acquisition (also called ndc induction, inductive learning ov learning
from i'xampte.s) generates more consistent rules, and the knowledge engineering process
depends less heavily on domain experts.

The key to a successful inductive knowledge acquisition is the reliability of the rule
induction algorithm. Induetion is an inferential process that develops a structure from
instances. It has been a standard methodology in business research for a long time. For
example, most statistical classification methods such as regression analysis, discriminant
analysis. Probit and Logit are inductive in nature. Rule induction mechanisms are different
from statistical methods in two ways. First, the resulting structure is a set of "If-Then"
rules rather than mathematical equations. Second, the rule induction algorithm may be
based on criteria different from sample mean and variance.

Quinlan's ID3. a popular rule induction algorithm, for instance, uses entropy to measure
the information content of each attribute and then derives rules through a repetitive
decomposition process that minimizes the overall entropy (Quinlan 1979). Although
reeent research findings indicate that rules generated by this approach outperform both
expert judgments and models derived from statistical discriminant analysis in stock market
prediction (Braun and Chandler 1987). loan default (Shaw and Gentry 1988). and bank-
ruptcy analysis (Messier and Hansen 1988), the algorithm has several limitations. First,
since it uses a repetitive decomposition process, real numbers must be converted to
integers. This may reduce the accuracy of the results. Second, the repetitive decomposition
process is inefficient when the sample size is large. Third, the entropy does not consider
the distribution of data and hence it is difficult to assess the probabilities assoeiated with
rules. Finally, a single algorithm is used to process both nominal (aXso cdW^d categorical,
e.g., male and female) and nonnominal (c.^,.. financial ratios) attributes with completely
different properties.

These limitations have reduced the performance and applicability of the algorithm.
For example, Liang, Chandler, Han, and Roan ( 1992) found that 1D3 performed rather
poorly if the domain was dominated by nonnomina! variables. In order to alleviate these
shortcomings, researchers have extended the original mechanism to incorporate prob-
ability assessment (e.g.. Cleary 1987; Quinlan 1987b), to prune or balanee the generated
decision trees (e.g., Quinlan 1987a), or to replace entropy with another measure (e.g.,
Goodman and Smyth 1988, 1989;Mingers 1989). Ahhough these modified mechanisms
avoid one problem or another, they still have two major drawbacks. First, they process
nominal and nonnominal variables in the same way without taking into consideration
their different characteristics. Second, the probability assessments are typically based on
the frequency of occurrence in the training data set. Although this measure is fine when
nominal attributes are involved (there is no other choice in this case), a more accurate
method should be used for nonnominal attributes. This is supported by the finding that
Probit (a method based on the normality assumption) significantly outperformed ACLS
(an improved version of ID3) in predictive accuracy when the domain was nonnominal
in nature (Liang. Chandler, Han, and Roan 1992). Mingers (1989) also reported that,
after comparing seven different measures for replacing entropy, no significant improve-
ment in predictive accuracy was found.

The goal of this paper is to present a new approach, called a Composite Rule Induction
System (CRIS), to overcome these problems. The approach assesses probabilities for
rules and applies different methods to handle nominal and nonnominal attributes. Instead
of using a single measure such as entropy to handle both nominal and nonnominal
attributes, it uses a cross-tabular approach to process nominal attributes and a statistical
inference approach to handle nonnominal attributes. A rule scheduling mechanism is
then applied to determine the relative importance of the candidate rules and to select
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the rule set accordingly. Furthermore, it uses sample distributions to infer the population
for nonnominal attributes and then estimates the probabilities associated with those rules
accordingly.

In the remainder of the paper. CRIS will be discussed in detail. Empirical results
comparing the predictive accuracy of CRIS with those of the entropy-based approaches
(ACLS and PLSl). the statistical discriminant analysis, and the backpropagation method
in neural networks will also be presented.

2. Ihe Rule Induction Problem

The goal of a rule induction algorithm is to construct a set of rules from data to
interpret the data and facilitate decision making when a new case is encountered. The
input data set includes a number of cases, each of which has values for a dependent
attribute and several independent attributes. The dependent attribute is usually nominal,
such as bankrupt or not. The independent attributes can be nominal or nonnominal.
The resulting structure is composed of rules in the following format:
U'iXa I') Then (y /^C) With (Probability 7 P) where

X = a certain independent attribute.
V= a hurdle value of the attribute,
*Y = the dependent attribute.
C ^ a value of the dependent attribute.
P - a probability value.
a, |0, and y = relational operators.
a, /3, 7 G { ^. > , < , > , < } ,
EXAMPLE. If humidity > 0.95 Then weather = raining With prob > 0.8.
In order to generate rules, a rule induction mechanism must determine ( 1) the in-

dependent attribute to be considered. (2) the hurdle value of the independent attribute,
(3) the corresponding value of the dependent attribute. (4) the probability associated
with the rule (i.e.. the likelihood that the rule is true), and (5) three relational operators.

There are a number of potential errors in rule induction. In general, these errors fall
into two categories: data errors and method errors. Data errors include random errors,
sampling errors, measurement errors, and factor errors. Random errors occur and are
considered natural in most domains. Sampling errors occur when the sample is not a
true representation of the domain. This often happens in situations where the sample
size is small or the sampling method is significantly biased. Measurement errors occur
when data are wrongly recorded. Faelor errors occur when the key attributes are not
included in the dataset.

Errors due to rule induction methods include hurdle value errors, sequencing errors,
and post-treatment errors. Hurdle value errors mean that the hurdle values of the rules
are determined improperly. For example, a rule induction method may induce a rule "if
body temperature is higher than 103 degree, then call your doctor," while the proper
rule should be "if the body temperature is higher than 101. then call your doctor."
Sequcneing errors mean that rules are organized improperly. Some existing methods use
post-treatments such as pruning to refine a rule structure. Errors due to post-treatments
aro. caWed post-treatment errors. For instance, pruning errors are introduced if good rules
are mistakenly cut by pruning heuristics.

Given these potential errors, a good rule induction algorithm should minimize the
overall errors through delicate tradeoffs. For example, a pruning heuristic works well if
the sampling and sequencing errors it removes are greater than the pruning errors it
introduces. Ideally, a good method should tolerate random errors, alleviate sampling
errors, and contain no hurdle value and sequencing errors. Because random and sampling
errors in the training data are difficult to detect, most research in rule induction focuses



4 TING-PENG LIANG

on reducing errors due to the method. For example, research on using measurement
functions other than the entropy function in ID3 focuses on reducing hurdle value errors.
Look-ahead heuristics that take rule dependency into consideration (Tu 1989) try to
reduce sequencing errors by considering the combined performance of a rule and its
possible successors in the rule selection process. Furthermore, using post-treatments such
as tree pruning to avoid overfitting the training data (Breiman. Friedman, and Stone
1984; Quinlan 1987a) involves tradeoffs between sampling, sequencing, and pruning
errors.

One problem with the existing rule induction algorithms is that they use a single
measurement function to determine the hurdle values for both nominal and nonnominal
attributes with substantially different characteristics. For example, the mean and variance
of a nonnominal attribute provide valuable information of random errors, whereas those
of a nominal attribute may not be useful for rule induction. Therefore, failure to take
advantage of distributive information for nonnominal attributes usually results in higher
hurdle value errors. An algorithm that treats different types of attributes differently is
likely to make improvements. Along this line of reasoning, the CRIS algorithm that
processes nominal and nonnominal attributes separately to reduce hurdle value errors
is developed.

3. CRIS: A Composite Rule Induction System *

In CRiS. the five functions of a rule induction mechanism are performed by three
major components:

(1) A hypothesis generator that determines hurdle values and the proper relationship
between independent and dependent attributes;

(2) A prohabilily cakulator that determines the probability associated with each rule;
and

(3) A rule scheduler that determines how candidate rules should be organized to form
a structure.

The interaction of the first two components generates candidate rules. These candidate
rules are intermediate results that form a rule space. The rules in the rule space may be
redundant or conflicting with each other. The third component selects a set of salient
rules from the rule space and organizes them into an optimum structure. They are dis-
cussed below.

3.1. Hypolhesis Generation

The first step for CRIS to induce decision rules is to generate hypotheses concerning
possible causal relationships in the input data. A hypothesis is a preliminary "If-Then"
rule whose probability is to be determined by the probability calculator and whose in-
terpretative power is to be determined by the rule scheduler. The purpose of hypothesis
generation is to determine hurdle values and identify causal relationships between de-
pendent and independent attributes. CRIS uses two different methods to generate hy-
potheses for nominal and nonnominal attributes.

3.1.1. Nominal Allribulcs. For nominal attributes, the values are simply arbitrary
identifications of different properties. Their mean and variance provide little useful in-
formation for rule induction. The attribute "bankruptcy," for example, may have values
1 (yes) and 0 (no). An average value of 0.5 has little use in this case. Therefore. CRIS
adopts a cross-tabular approach to determine the relationship between nominal attributes
and the dependent attribute:

1. For each nominal attribute, classify ail cases in the input data set by their attribute
values V, {/ ^ 1 m) and dependent attribute values Cj (j ^ 1 n). and then
count the number of cases (/,,) in each combination. The result of this step is an occurrence
frequency table:
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Ci C, C\,

X V,

2. For each X - v^^ik = 1 m). select a K ^ c^, where,4, ^ max {fk,\j = 1 . . . . ,
H }, to formulate the hypothesis, "If A' ^ LV Then Y = c\." If there is a tie, all possible
hypotheses are generated. Sinceattribute A hasmlevels(A ^ 1 m). the total number
of hypotheses to be generated for the attribute is m {plus the number of ties).

3. Repeat steps 1 and 2 until hypotheses are generated for all nominal attributes.
[EXAMPLEI A set of bankruptcy data shown in Table 1 is used to illustrate the process.

CRIS generates the following occurrence frequency tahle for attribute V2 (step I) .

VI

./M

.fu

.fxn

V2
1

10

0

6

4

Two hypotheses can be generated for V2 {step 2):
HI: If ^ 2 - OThen F l - 0.
H2: If K 2 - 1 Then r i - 1.
3.1.2. Nomiom'mal AitrihitU's. For nonnominal attributes, sample mean and variance

provide valuable information about the population and hence are useful for hypothesis
formulation.

In a two-class classification problem, assuming distributions of attribute A' for classes
/ {i.e., y ^ f,, / ^ I or 2) are [M, - ffM-' then we use X, and S^ to estimate M/ and ff?-
In order to differentiate these two classes, we first find a value A', where cases are equally
likely to be classified as either class (see Figure 1). This value is called the cu{ between
these two classes, which means that if the attribute value of a case is higher (lower) than
the cut, then the case is likely to fall in the class with the higher (lower) mean. By
assuming that attribute values in both classes are normally distributed, the cut can be
calculated by the following equation:'

(1)

The cut provides a basic hurdle value for hypothesis formulation. If A'2 > -V], for
instance, then two hypotheses can be formulated:

' fi and n~ stand for population mean and variance, whereas .V and 5" stand for sample mean and variance.
^ The normality assumption is chosen tor implementation because of its popularity. In fact, other distributions

can aist) be used. Eor example, ifevidcncc indicates that the data fil a logistic normal distribution or an exponential
distribution, then cut values and probabilities can be calculated based on the chosen distribution. The CRIS
method itself is independent ofthe panicular data distribution chosen for implemeniation. A possible extension
ofthe CRIS approach, therefore, is to incorporate a pre-processor for determining the most likely data distribution
and then generate cut values and probabilities accordingly.
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TABLE 1

A Set of Bunkrupicy Dciui

//) I

1
2
3
4
5
6
7
8
9 (
10 (
11
12
13
14
15
16
17
18
19
20

•1 n

3 0
3 0
3 0
3 0
) 0
) 0
3 0
3 0
3 0
3 0

1
0
I
0
1
0
0
1
0
0

13

0.1113
0.0537
0.0178
0.0136
0.0975
0.1237
0.0539
0.1921
0.0777

-0.0621
-0.0656
0.0189

-0.1953
-0.1356
-0.0038
0.0118
0.0029
0.0448

-0.1046
-0.0569

.-4

0.3880
0.2087
0.4831
0.2014
0.4730
0.2982
0.5189
0.4395
0.3689
0.7563
1.5557
0.2409
0.0113
0.4794
0.6956
0.9479
0.3398
0.8165
0.7100
0.3652

.•5

1.9862
1.6827
1.3325
0.7537
2.7911
2.8921
2.5375
2.9946
2.5478
2.1047
2.9152
1.2443
0.0015
2.4443
1.9334
0.1530
1.8195
1.4482
i.llil
2.2768

Where:
I I: bankruplcy: 0 = no; 1 = yes;
11: auditor's opinion; 0 = unqualified. 1 = qualified opinion;
J 3: the ratio of net income/total assets;
('4: the raiio of current assets/total assets;
\'5\ ihe ralio of current assets/current liabilities.

( 1 )

(2) IfA'<A;Then y - c , .
Although these hypotheses can be used directly for classification, their accuracy is

frequently below the desirable level. In order to ensure the quality of the resulting model,
therefore, hypotheses with higher classification accuracy must be developed. In other
words, the hurdle value needs to be higher than X, for hypothesis (I ) and lower than X,
for hypothesis (2).

One way to find hurdle values with higher accuracy is to control the probability that
a case falls in a particular class. The rationale for this approach is that the lower the
probability that a case belongs to a certain class, the greater the probability that it belongs
to other classes. In Figure 1. for example, A|(0.90) is the 90th percentile of A',, which

Class 1 Claas 2

X^ ^2(0.10) X (̂0.90) X^

1. Basie Concept of Classification.
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indicates that if the attribute value of a case is greater than A|(0.90) . then the chance
that the case falls into class 1 is less than 10%. Therefore, replacing A, in hypothesis (I )
with A',(0.90) will increase the accuracy of the hypothesis. Similarly, replacing A', in
hypothesis (2) with the lOth percentile of A":-, A'n{0.10), will increase the accuracy of
hypothesis {2).

Hurdle values identified by the above approach usually inerease the classification ac-
curacy for one class at the priee ofthe other. Therefore, only one ofthe two potential
hypotheses is useful. For example, Ai(0.90) can be used to replace A, in hypothesis ( I ) ,
but not in hypothesis (2 ) . to improve accuracy. Equations (2) and (3) show h )W these
hurdle values can be calculated from sample mean, variance, and a probability, P. The
r( P) in the equation is the z-valuc at probability /* of a standard normal distribution.^
Equation (2) applies to the class with the lower mean, whereas equation (3) applies to
the one with the higher mean.

X,{P)- X.+z{P)*S,. (2)

X,{\ - P) = X, + 2 ( 1 - P)*S,. (3)

Procedures for hypothesis formulation for nonnominal attributes can be summarized
as follows:

1. Calculate the mean and variance of the attribute to be analyzed for each class.
2. Calculate the cut. A,, to generate two basic hypotheses.
3. Specify the desired probabilities, and then generate more hypotheses based on the

hurdle values calculated hy equations (2) and (3).
4. Repeat steps I to 3 until hypotheses are generated for all nonnominal variables.
[EXAMPLE] The above procedures allows 13 , K4, and K5 in the bankruptcy example

to be analyzed. First, for eaeh attribute, sample means and variances of bankrupt firms
(I ' l - 1) and nonbankrupt firms (Tl = 0) are calculated separately. Then the cut values
are calculated from sample means and variances. Finally, by specifying the desired prob-
abilities for hypothesis formulation, say 90% and 85';?, hurdle values, A'i(0.90), .V2{0.I0),
A'i( 0.85) and A2(O.I5). can be calculated. Table 2 shows the results of these three steps.

Based on the data in Table 2, the following hypotheses are formulated:

V 3 {Nel income I tolal assets).
H3: If \"S > 0.0128 Then V 1 - 0.
H4: If r 3 <0.0128Thcn I I - I.
H5: If K3> 0.0327 Then I'l - 0 .
H6: If K3 > 0.0535 Then V1 - 0.
H7:IfK3<-0.0051 Then V\ = I.
H8: If ['3 <-0.0239 Then I I - 1.

i'4 {Current assets/tola/ assets).
H9: If K4 > 0.4688 Then VI = ].
HIO: If K4 < 0.4688 Then VI - 0.
H l l : If 1̂ 4 > 0.5842 Then 11 = 1.
H 1 2 : l f F 4 > 0.6281 Then ( 1 = 1.
H 1 3 : I f K 4 < 0.1609 Then 1 1 = 0 .
H14: if 14 < 0.0438 Then V\ = 0 .

V5 {Current assets/current liabilities).
H i 5 : I f r 5 > 1.8881 Then ^ 1 = 0 .
HI6; If r 5 < 1.8881 Then V\ = \.

' When the sample size is small, the r-value. z{P). can be replaced by a Nvaluo. t{iif. P). where (//"= degree
of freedom.
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TABLt 2
Anulysis of Three Nonnominal Attributes

Altributc

\3

14

t'5

Class

1 1 = 0
11 = 1

I 'I = 0
11 = 1

[ ' 1 = 0
n - I

Mean

0.0679
-0.0483

0.4136
0.6162

2.1622
1.5347

St. Dev.

0.0664
0.0736

0.1551
0.4139

0.6962
0.8975

V,

0.0128
0.0128

0.4688
0.4688

i.888l
1.8881

,V,(/'I)'-^

0.0535
-0.0239

0.0438
0.6281

2.7759
1.1994

XXPlf

0.0327
-0.0051

0.1609
0.5842

2.5220
1.3964

Note.s: 'The values are A';(0.90) for the class with higher mean (e.g.. the first row in I 3 is A'n- ,(0.90)) and
A',(0.10) for the class with lower mean (e.g., the second row in 13 is A'ij=i)(0.10)).

^The values are ,V,(0.85) tbrthe class with higher mean (e.g., the first row in 13 is A',,. ,(0.85)) and .V,(0.15)
for the class with lower mean (e.g.. the second row m i 3 is An.o((). 15)).

•' Since the sample size was 10 for each class, /-values were used in calculating these hurdle values.

H17: If r 5 > 2.5220 Then V\ - 0.
HI8: If ^'5 > 2.7759 Then I ' l - 0.
H19:If r 5 < 1.3964 Then 11 - 1.
H20: If I 5 < 1.1994 Then ( 1 = 1.

3.2. Probability Assessment

After a hypothesis is generated, the probability calculator determines its probability.
This probability is conditional. It indicates the likelihood that the conclusion is true if
the condition ofthe hypothesis is met.

For a problem with n classes. Ci t,,. the probability of a "greater-than" hypothesis,
"If A'> t'Then > ' - a . " is the conditional probability. P{Y = c\\X>v). whieh ean be
calculated from the prior probability of the elass and other conditional probabilities.
Two kinds of information are usually available from the input data: {I) the prior prob-
ability of class /. P (Y = o)- where / = 1 n. and {2) the conditional probability
that, given the class /, the probability that the attribute value of a case falls into a certain
range, P {X > v\Y = c,). These two kinds of probabilities allow the desired posterior
probability to be calculated by the following equation derived from the Bayesian Theorem:

(4)
y

3.2.1. Nominal Attributes. For nominal attributes, information about data distri-
bution is unavailable. Hence, the conditional probability is assessed by its relative fre-
quency of occurrence in the training data. Because both the numerator and denominator
are divided by the same constant (i.e., total number of occurrences), equation (4) can
be simplified as follows (XA stands for the frequency in the situation where A" - i; and Y

[EXAMPLE] Assuming that the prior probability is 0.5 for either class in the bankruptcy
example, then the probabilities associated with HI and H2 can be assessed as 0.625
(10/ l6)and 1.0(4/4). respectively.

3.2.2. Nonnominal Attributes. For nonnominal attributes, the conditional probability
F (A' > ul F = t j is determined by the distribution of A' for class / {/ ^ ! , . . . , « ) .
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Assuming that the mean and standard deviation of the distribution are X, and S,. then
the probability P (X ^ v\Y ^ c,) ^ 1 - P {z = {v - X,)l S,). Hence, equation (4) can
be transformed to:

Similarly, the equation for calculating the probability associated with a less-than hy-
pothesis, "If A' < V Then Y = Ct." is:

[ E X A M P L E ] Assuming that the prior probability of bankruptcy or nonbankruptcy is
0.5, the probability associated with hypotheses H3 to H20 can be assessed. For example,
the probability of hypothesis H6. "If r ' 3 > 0.0535 Then T l = 0 ," is calculated as follows
(since the sample size is small, /-values are used to replace the r-values in equation (6 ) ) :

P{V\ - 0) = 0.5: P{1\ = 1) = 0.5;

0.0535 - 0 . 0 6 7 9

Therefore,

0.58
- 01 F 3 > 0.0535)-

Because the sample means and variances of different classes may differ significantly,
it is possible that the assessed probability for a certain hypothesis is lower than that of
the cut hypothesis. In this case, the hypothesis needs to be modified. For example, the
probabilities associated with hypotheses H13 and HI4 are 0.32 and 0.17. respectively.
These numbers indicate that it is more appropriate to hypothesize that Kl - I when
J 4 is less than 0.1609 or 0.0438. The probabilities ofthe new hypotheses are 0.68 and
0.83. respectively. If a hypothesis is dominated by its corresponding cut rule, then the
hypothesis is removed from the rule space.

3.3. Slniciure Conslruciion

A hypothesis, along with its associated probability, is called a candidate rule. General
guidelines for determining the relational operators a. 0. and 7 for a candidate rule are:
(1) 7 is " = " when a is "=" ; (2) 7 is " > " when a is otherwise:'' and (3)/3 usually is " - "
if the dependent attribute is nominal.

Candidate rules are the basie elements of the knowledge base of an expert system.
Because more than one candidate rule is generated for each attribute in the previous

" In practice, 7 usually is " = ". which means thai the probability of thi' rule is at least equal to the specified
value. 7 his simplifies the representation of rules.
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process, these rules may be redundant or inconsistcnl. Additionally, these rules are gen-
erated based on information concerning a single attribute. Therefore, a mechanism is
necessary to evaluate the relative importance of these candidate rules and form a structure
to classify correctly a maximum number of cases.

Unlike the ID3 algorithm that selects attributes based on their entropy values, the rule
scheduler of CRIS examines the extent to which these rules cover the cases in the input
file and then organizes them based on their saliency. The salicncy of a candidate rule is
defined as the difference between the number of cases correctly covered and those in-
correctly interpreted by the rule. These numbers are called the /;// value and m/.v.v ralue
of the rule, respectively. The cases used for determining the saliency of a rule are called
iniiinng cases. The resulting structure is a decision tree with rules as its nodes. The
construction process includes:

1. Delcrminalion ol Rule Saliency. Apply all rules to the training cases to determine
their hit and miss values.

2. Selection of a Rule. The rules generated from cut values (called cui rules) and high
accuracy rules (called regular rules) have different properties. The former provides an
equal-likelihood split between classes, whereas the latter specifies hurdle values for higher
accuracy in classifying a certain class. Therefore, the heuristic for rule scheduling includes
two steps. First, the regular rules are selected to interpret as many training cases as
possible. Then the eut rules are applied to eover the remainder in order to guarantee the
completeness of the resulting structure. Guidelines for rule selection are:

2.1. If there are rules whose miss values are zero and whose hit values are positive,
then select the one with the highest hit value.

2.2. If all rules have positive miss values, then calculate the saliency for each rule by
deducting its miss value from its hit value and selecting the one with the highest positive
salieney value.

2.3. If more than one rule has the same saliency value, then choose the one with the
highest probability.

2.4. If more than one rule has the same saliency value and probability, then choose
the one associated with the most significant attribute. The significance of an attribute is
measured by the following formula. The higher the value is, the more significant the
attribute is.

Significance = — — ^.. - , where (8)

Xj = mean of attribute A' for class /;
X ^ overall mean of attribute A';
Sj = variance of attribute A' for class /;
n, - number of cases for class /; and
i ^ number of classes in the data set.
3. Redefinition ofllie Training Cases. The selected rule splits the original set of training

eases into two subsets: cases covered by the rule (both correctly and incorrectly) and the
remainder.

3.1. The covered .wl. If all cases covered by the rule are correctly interpreted, then
add the rule to the final structure and stop processing this subset. Otherwise, add the rule
to the structure, assign the cases covered by the rule to be the new training set, and then
go to step 1 for further analysis.

3.2. 77K' remainder. If no case is left after applying a rule, then keep the existing
training set and go to step 5 to find a pair of cut rules. Otherwise, assign the remainder
to be the new training set and go to step 1.

4. Iieralion of the Process. Repeat steps I to 3 for the regular rules until the termination
conditions stated in 3.1 and 3.2 are met or no regular rules that have positive saliency
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FiGURb 2. Resulting Decision Tree trom the Exanipk'.

values exist. By the iteration process, the scheduler moves down the decision tree to
construct the structure.

5. AppUcalion of Cut Rules. The cut rules are used when no regular rule is available
for further classifying the training set. The procedures are the same as applying the regular
rules, except that the cut rules must he applied in pairs and hence their saliency value is
the sum of their individual values. It is possible to apply more than one set of cut rules
to interpret a training set, as long as the number ofcases correctly interpreted increases.
The whole process stops when further improvement is impossible. Following these pro-
cedures, we can generate a rule structure as shown in Figure 2 to interpret the bank-
ruptcy data.

In summary, the CRIS mechanism works in the following manner. First, a set of data
containing a nominal dependent attribute and several independent attributes is entered.
Then hypotheses are generated hy the system's hypothesis generator. Based on different
properties of nominal and nonnominal attributes, different algorithms are used for hy-
pothesis generation. Third, the hypotheses are converted to candidate rules by assessing
their probabilities and making necessary modification. Finally, the resulting candidate
rules are evaluated and selected to form a decision structure that can interpret the existing
eases and facilitate future decision making.

4. Empirical Evaluation of CRIS

Three experiments were conducted to evaluate the performance of CRIS. In the first
experiment, data for bankruptcy prediction were used to compare CRIS with the existing
entropy-based approaches, discriminant analysis, and the backpropagation mechanism
of neural networks. Theoretically, these approaches make different assumptions on the
distribution of data, use different criteria to evaluate the relative importance of attributes.



12 TING-PENG LIANG

TABLE 3

Compuri.son of CRIS, ACLS, PLSl, BP and Discrimtnartl Analysis
(1) Major assumptions

DiscriminanI analysis (DA)
^ D a t a population is multivariate normal distribution
—No perfect correlation among independent attributes
—Equal covariance matrices for classes

.iCLSalgoriihin (entropy-based)
—No conflict in the training set and numerical values must be integer

/V.51 algoriihin (entropy-based)
—Numerical values must be integer

Baekpropa^atioii (BP)
—None

CRIS at^oriihm
—Nonnominal data follow a certain data distribution For each class

(2) Selection criteria, processes, and resulting models

Methods

Selection criteria

Selection
processes

Resulting models

MDA

Covariance
matrix

Matrix
operations

Linear equations

Entropy-based

Entropy

Repetitive
decomposition

Rule structure

BP

Delta rule

Simulation

Network
structure

CRIS

Rule saliency

Rule
scheduling

Rule structure

and generate different models from data. These differences are summarized in Table 3.
It is reasonable to assume that they perform differently with different types of problems.

The results from the bankruptcy data indicate that CRIS outperforms the other four
methods. To verify these results, a second experiment was conducted on sets of LIFO/
FIFO choice data. Again. CRIS is proved to be more accurate.

In order to understand when and why CRIS or other rule induction methods work
better, computer-generated data were used in a third experiment to examine how different
data characteristics affect the performance of selected rule induction methods. This ex-
periment demonstrates that data distribution and attribute correlation afiect the relative
performance of different methods.

4.1. Bankruptcy Prediction

The bankruptcy data set used in the experiment contains 50 cases. Each case includes
four nominal and five nonnominal attributes. Twelve experiments were conducted on
the bankruptcy data. In each experiment, the data set was randomly divided into a
training set and a testing set. The training set contained cases used for inducing the
model; the testing set contained hold-out cases for evaluating the predictive validity of
the resulting model. All five methods were applied to each training set. The induced
models were then used to predict the cases in the corresponding testing set. The accuracy
of a model was measured by the number of cases correctly predicted by the model divided
by the total number of cases in the testing set.

Twelve observations were obtained for each method. The tools used for running the
entropy-based algorithms were ACLS (Analog Concept Learning System) and PLSl
{Probabilistic Learning System 1). ACLS is a modified version of the original ID-3 al-
gorithm (see Braun and Chandler 1987 and Paterson and Niblett 1982 for details). PLS1
further allows probabilities to be estimated from the frequency of occurrence, called the
utihty of a rule {Rendell 1983. 1986). The discriminant analysis program used was the
DISCRIM procedure in the SAS package.
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The backpropagation algorithm is the most popular paradigm in neural networks. It
allows cases to be classified by assigning proper weights to paths connecting processing
elements (called connection weights). The weights are determined by a trial-and-error
process that minimizes the difference between actual outputs and desired outputs. The
initial weights are determined randomly. The outputs generated from these weights are
compared with the desired outputs. The errors are then propagated backward to adjust
the connection weights. This process continues until an acceptable level of errors or a
certain number of iterations is reached. The software used in the experiment was adapted
from the source code in Pao (1989). The network configuration was determined arbi-
trarily. It includes one hidden layer with three processing elements. For eaeh data set,
1000 iterations were performed.

Two different sample sizes were used in the training set to determine whether sample
sizes may have an elfect on predictive accuracy. Six of these sets had 20 cases while the
other six of them had 30 cases. All testing sets included 20 cases.

The results ofthe experiment indicate that among five methods CRIS had the highest
average accuracy in predicting hold-out samples (0.771 for ACLS. 0.754 for PLS 1.0.758
for discriminant analysis. 0.783 for backpropagation, and 0.808 for CRIS). The results
ofthe Wilcoxon paired rank tests indicate that CRIS outperforms PLSI and MDA sig-
nificantly in pairwise tests {p = 0.0367 and 0.0382, respectively). The difference between
ACLS and CRIS is close to a 10% significance level. The difference between backpropaga-
tion (BP) and CRIS is not significant.^ The effect of sample size is not significant.

4.2. LIFO/FIFO Choice

The LIFO/FIFO data included 58 pairs of training and testing data sets divided into
two categories based on the relative effect of nominal attributes. Twenty-eight of them
contained cases whose LlFO/FlFO choices were primarily affected by the industry type
(a nominal attribute). They are called industry-dominated data sets (i.e., nominal attri-
butes have dominant effects). The other 30 sets included cases whose LIFO/FIFO de-
cisions were not strongly affected by the nominal variable. This allows the effect of nominal
attributes on predictive accuracy to be examined.

In each category, three different sample sizes were examined. The training and testing
data were paired in three different ways: ( 1) using a large-size training sample to predict
a small-size testing sample (L/S) , (2) using a medium-size training sample to predict a
medium-size testing sample (M/M), and (3) using a small-size training sample to predict
a large-size testing sample (S/L) . Therefore, there were a total of six different settings.
The sample sizes in the industry-dominated category were 98 (large). 73 (medium), and
49 (small). The sample sizes in thenondominated category were 78 (large). 58 (medium),
and 39 (small). Each case was represented as one nominal variable and eight nonnominal
variables. The dependent variable was the adopted inventory method, either LIFO or
FIFO. A detailed description of variable selection and data collection can be found in
Liang. Chandler. Han, and Roan (1992).

ACLS and CRIS were applied to all 58 pairs of training sets to derive rule structures
for predicting the cases in their corresponding testing sets. The resulting average predictive
accuracy in each setting is summarized in Table 4. Again, CRIS predicts more accurately
than Ihe entropy-based ACLS in both industry-dominated and nondominated situations.
A three-way ANOVA test indicates that two factors arc significant at the 1% level in this
experiment: the nature of data and the method. Both methods perform better when

' Because the network configuration was determined arbitrarily. Ihe results may not indicate the performance
of neural networks in general. tJntortunately. there are no clear guidelines Ibr selecting the most appropriate
configuration. This is a research issue outside the scope ot this paper.
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TABLE 4

Empirical Re\iili.-i of the Second E.xpcrinwiil

ACLS
CRIS

Industry-Dominated Sets

L/S

90.0
92.2

M/M

89.0
89.8

S/M

88..1
9L2

Mean

89.1
91.1

L/S

62.3
69.5

Nondominated Sets

M/M

62.6
70.1

S/L

60.9
67.8

Mean

61.9
69.1

Global
Average

75.5%
80.1%

Note. The numbers are average predictive accuracy.

nominal attributes play a major role in the data sets. The effect of sample size is again
insignificant. This indicates that both methods are insensitive to sample size."

In order to understand further how these two methods performed, two ANOVA analyses
were conducted on dominated and nondominated settings separately. In the nondomi-
nated settings, the method effect is significant at 1% level (F = 22.8). In the dominated
settings, however, the method effect is not significant at 5% level {F = 2.9). This shows
that the superiority of CRIS is primarily due to its ability to handle nonnominal attributes
better and confirms our original assumption—different types of attributes should be
processed in different ways.

In summary, at least three interesting findings have been observed in the first two
experiments. First. CRIS outperforms other entropy-based methods when nonnominal
attributes are important in the domain. Second. CRIS outperforms other entropy-based
methods when attribute correlations exist. Finally, because the current implementation
of CRIS assumes normal distribution of data, CRIS should perform better when this
assumption is fulfilled. In the third experiment, the three observations stated above are
evaluated on computer-generated data.

4.3. Simulation on Computer-Generated Data

Three factors were controlled in the third experiment; nature of domains, data distri-
bution, and attribute correlation. Domains were divided into three types: purely nominal
attributes, purely nonnominal attributes, and a mixture ofthe two. Each case included
four attributes. In a purely nominal domain, all four attributes were nominal. In a purely
nonnominal domain, all four attributes were nonnominal. In a mixed domain, two at-
tributes were nominal and two were nonnominal.

Data distributions included two levels: normal and nonnormal. In the normal distri-
bution situation, data were randomly generated from a multivariate normal distribution
function. In the nonnormal situation, a bimodal distribution was chosen as a representative
because its shape is clearly different from a normal distribution.

For both normal and nonnormal situations, attribute correlations were controlled in
the data generation process. In the high correlation situation, the covariance matrices
for classes 1 and 2 were V\ and I'2, as follows. In the low correlation situation, the
nondiagonal numbers in the matrices were zero.

100 50 40 30

64 30 20

25 10

25

V2 =

100 50 40 30

64 30 30

36 20

36

* Statistical methods are usually more sensitive to sample si/e. For example, the pertbrmance of Probit dropped
significantly in the S/L setting (Liang, Chandler. Han. and Roan 1992). Both ACLS and CRIS are better than
statistical methods in this aspect.
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TABLE 5

Average PrcJiclivf Accuracy in I urioits

Distribution

Correlation

Nonnominal

Mixed

Nominal

ACLS
CRIS
PLSI

ACLS
CRIS
PLSI

ACLS
CRIS
PLSI

High

0.875
0.925
0.84

0.855
0.91
0.849

0.815
0.84
0.85

Normal

Low

0.94
0.95
0.81

0.915
0.96
0.881

0.945
0.96
0.96

High

0.825
0.835
0.722

0.79
0,83
0.76

0.725
0.82
0.833

Bimodal

Low

0.865
0.845
0.715

0.83?
0.87
0.844

0.78
0.85
0.86

Combining these three factors resulted in twelve ( 3 x 2 x 2 ) different settings. For
each setting, ten sets of data with 40 cases each were generated. Five of them were used
for inducing rules while the other five were used for testing the rules. ACLS. CRIS. and
PLSI methods were applied to all data sets (totally 60 pairs of training and testing data
sets). The predictive accuracy was then calculated for each method. Table 5 shows the
average predictive accuracy of different methods in different settings.

The results shown in Table 5 indicate that ACLS performs well if the domain includes
nonnominal attributes and attribute correlation is low. CRIS performs well if the domain
includes nonnominai attributes and attribute correlation is high. PLSI performs well if
the domain includes nominal attributes and data distribution is bimodal.'' A four-way
ANOVA test results in the following significant effects: ( 1) data distribution (/•' = 95.3.
p < 0.01 ). (2) attribute correlation {F = 33.5, p < 0.01), (3) induction method (F
^ 14.5,/J < 0.01), (4) interaction of attribute type and attribute correlation (F = 4.3. p
< 0.05). and (5) interaction of attribute type and induction method (F ^ 11.4. p < 0.01).

The significant effects of data distribution, attribute correlation, and method conclude
that the predictive accuracy ofthe induced rules is affected by different data distribution,
the degree of attribute correlation, and the rule induction method. The significance of
the interaction effect of attribute type (i.e., nominal or nonnominal) and attribute eor-
relation indicates that the predictive accuracy of a method is affected by their interaction.
The significant interaction effect of attribute type and induction method indicates that
method selection must take into consideration the types of attributes the domain has.
In fact, patterns can be found easily if the data in Table 5 are read column-by-column.
The predictive accuracy of CRIS and ACLS decreases, whereas the predictive accuracy
of PLSI increases from nonnominal to nominal.

Another fact worth discussion is that the predictive accuracy of CRIS is more stable
than those of ACLS and PLSI. In the worst case (bimodal. high correlation, and nominal),
the average predictive accuracy of CRIS is 0.82 (see Table 5), which is not significantly
lower than that ofthe best method (0.833 for PLSI). The worst-case figures for ACLS
and PLSI, however, are 0.725 and 0.715. respectively. These are significantly lower than
the performance of the best method in their respective settings. This indicates the ro-
bustness ofthe CRIS method.

' A problem I found in PLSI is that it completely depends on the oceurrenee frequency to delini.' proper
hyperplanes. As a result, the induced rules are frequently unable to classify certain testing cases if their attribute
values fall out of the range revealed in the training data. This is a major reason that it performs poorly when
nonnominal attributes are present.
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Finally, a major question lo be answered is whether the average predictive accuracy
of CRIS is better than existing entropy-based rule induction methods such as ACLS and
PLSl. Two univariate /-'-tests were performed for comparing the average predictive ac-
curacy of these three methods. The results conclude that CRIS is significantly better than
ACLS ( F - 11.257, p < 0.001) and PLSl {F = 28.299. p < 0.0001). The overall average
predictive accuracy of the three methods is 0.847 for ACLS. 0.883 for CRIS. and 0.827
for PLSl.

5. Concluding Remarks

This article presents a new approach for inducing rules from data which can be used
to acquire knowledge for developing expert systems. The major features that make it
different from existing approaches are: ( I ) it uses difFerent techniques to generate hy-
potheses for nominal and nonnominal attributes; (2) it uses sample distribution (for
nonnominal attributes) and frequency table (for nominal attributes) approaches to es-
timate the probabilities associated with rules; and (3) it uses a rule scheduling technique
to determine the relative importance of different attributes and to construct the optimum
rule structure. The results of the empirical study indicate that the new approach outper-
forms the existing rule induction algorithms, ACLS and FLSI, and the statistical dis-
criminant analysis in predictive accuracy.

Given the increased use of expert systems in various business areas, this work is a step
toward improving the knowledge acquisition tool for expert system design. With the
improved rule induction system, a knowledge engineer can construct knowledge by col-
lecting previous cases solved by the experts, identifying attributes that may have effects
on the decision (experts can provide valuable advice in these two stages), and executing
a rule induction program. For those cases where rules are a good representation of the
expert's knowledge, the tedious process of interview and protocol analysis can be reduced
to a minimum level.

This research also provides a powerful tool forclassificatioii. An important implication
of this work is that due to different natures of nominal and nonnominal attributes,
methods applying a single criterion to process them may not lead to the optimum model.
The entropy-based approaches are useful in handling nominal attributes, while the sta-
tistical methods are powerful only in handling nonnominal attributes. A proper integration
of these methods can produce tools capable of constructing more accurate models (Liang,
Chandler, and Han 1990). The CRIS project is only the first step. Further research is
needed to investigate the following issues; (1 ) how the rule induction method can take
advantage of theories developed in statistics, (2) how a globally superior method can be
developed. (3) how information and misclassification costs can be taken into consideration
in designing expert systems, and (4) how to choose the most appropriate method when
a globally superior method does not exist. Works on these issues should provide much
insight into improving the performance of expert systems.**

" The author thanks the editors and reviewers for their help in Improving the manuscript. John Chandler
and Larry Rcndell fur making available ACLS and PLSl systems. Peter Silhan and Mark Silver for their comments
on earlier versions of the paper. The aulhor also thanks James C. McKeown lor providing the bankruptcy data,
Ingoo Han for performing some empirical and statistical analyses, the Campus Research Board and the De-
partment of Accountancy of the University oflllinois for partial financial support.
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