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This paper investigates some reasoning issues involved in developing an integrated modeling
environment called a model management system. A medel management system is a computer-
based environment designed 1o support effective development and utilization of quantitative
decision models, Since the construction of decision models is a knowledge-intensive process,
reasoning plays a critical role. Reasoning is particularly important when automated model
integration is needed in a large-scale system. In this case, heuristics are required to reduce
the complexity of the process. This paper examines the planning and automated formulation
of complex madels from smaller building blocks. First, a hierarchy of abstractions that inte-
grates previous contributions in model management is presented. Then, a modeling process is
formulated as a planning process by which a set of operators are scheduled to achieve a
specific goal. This process involves searches for alternatives thar can eliminate the difference
between the initial state and the goal state. Various reasoning strategies and heuristic evalua-
tion functions that.can be used to improve the efficiency of developing a master plan for
model integration are discussed.

INTRODUCTION

A model management system (MMS) is a software system that handles all
accesses to decision models stored in a model base. Its primary purpose is to
enhance decision performance by facilitating the construction and utilization of
decision models. The idea of model management is similar to that of data man-
agement except that the objects to be handled are decision models rather than
numerical data. By ‘‘decision models” we mean quantitative models for prob-
lem solving, such as production schedule, inventory control, and facility man-
agement models. In most decision processes, the decision maker needs accurate
data and reliable quantitative models. For example, a firm needs a data base to
store all sales data and good sales forecasting and inventory control models to
predict future sales and to reduce inventory costs. To achieve this goal, functions
that support model creation, storage, retrieval, execution, and explanation are
essential. Among them, model creation is the most knowledge-intensive function
and requires knowledge of both individual models and the modeling process.

There are two different ways that a new model can be created: It can be
developed from scratch, or it can be created by properly integrating existing
modules. The most straightforward approach to solving a new problem often is
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to develop a new model for the problem. This provides the decision maker with -
models tailored to the needs of the problem. In some situations, however, creat-
ing new models from scratch may not be necessary or feasible. For example, the
problem encountered may be a combination of several smaller problems, each of
which has an existing model. In this case, a proper Integration of those existing
models may be adequate for solving the problem. The process by which smaller
models are integrated to form a composite model is called mode! integration
(d’Alessandro et al., 1989; Dempster and Ireland, 1989; Geoffrion, 1989;
Liang, 1988). It allows effective use of the stored models, saves modeling costs,
and expedites the modeling process.

When a composite model is desired, the typical process involves at least
three major stages: planning, evaluation, and selection. At the planning stage,
proper models are identified and scheduled. At the evaluation stage, selected
candidate models are evaluated and unqualified ones are deleted. At the selec-
tion stage, criteria are used to choose the most appropriate model if more than
one candidate is available.

There are two approaches to the model integration process: user-directed .
modeling and automatic modeling. Both are supported to a certain extent by
MMS. User-directed modeling allows a decision maker to specify how several
smaller models can be combined to become a larger one. The user is responsible
for finding a set of appropriate models and for determining the best way to
integrate them. In other words, the user takes care of all three stages in the
process, and the MMS serves only as a blackboard on which the user examines
different alternatives. Because the system performs a limited number of intellec-
tual activities in this case, 2 good model manipulation language may be ade-
quate.

Automatic modeling, on the other hand, requires that the system automati-
cally formulate a decision model for the user. A long-term goal of automatic
modeling 1s to develop an MMS capable of designing decision models based on

the problem description provided by the decision maker. This would allow the
~ system to replace human model builders. Given current information technology,
however, this goal is, at least for the present, very difficult to achieve. One
major difficulty is that a modeling process is usually highly unstructured and
involves a great deal of common sense, a set of knowledge computers cannot yet
handle.

At present, a feasible goal for model management would be semi-automatic
modeling. In other words, given the desired information, the system is capable
of finding & model or a sequence of models already stored in the mode] base and
of suggesting candidate models (planning). The user is responsible for selecting
and validating the models formulated automatically by the system. After a for-
mulated model is chosen by the user, the system executes the model and reports
the result. Figure 1 illustrates this cooperation between the system and the user.



Reasoning for Automated Model Integration 339

Advice
Suggestion
Exscution

MMS USER

v

Selection
Evaluation

FIGURE 1. Cooperation between MMS and the user.

The primary purpose of this paper is to explore the reasoning issues in-
volved in automated formulation of quantitative models. Developing the semi-
automatic model integration capability needs both model representation schemes
that Jogically represent each model in the model base and reasoning mechanisms
that schedule models. In recent years, several model representation schemes
have been developed, such as relational (Blanning, 1982, 1985a, b, 1986),
logic-based (Bonczek et al., 1981; Dutta and Basu, 1984; Kimbrough, 1986;
Krishnan, 1990; Pan et al., 1986), frame-based (Dolk 'and Konsynski, 1984),
and graph-based approaches (Elam et al., 1980; Geoffrion, 1985, 1987; Liang,
1986). In this article, reasoning issues involved in the model integration process
are discussed from a planning perspective.

Most problem-solving processes can be considered as planning processes
through which a set of operators can be found and scheduled to eliminate the
difference between the initial state and the goal state (Simon, 1981, 1983). This
process involves a search of subgoals, operators, macro-operators, and abstrac-
tions.-By an analogous definition, the model integration process is considered a
process by which available models are selected and scheduled to eliminate the

-difference between the desired information and the available information. To
determine and eliminate the difference, the following issues are crucial:

1. State representation: What information should be included in a state rep-
resentation?

2. Reasoning: What mechanisms can be used to eliminate the difference
between the goal state and the initial state?

3. Heuristic functions: How can the efficiency of the process be improved?

They will be discussed sequentially in the remainder of this article.
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HIERARCHY OF ABSTRACTIONS: A REVIEW
OF MODEL REPRESENTATION

To determine how a state should be represented, we must first consider what
level of abstraction is necessary. Here the concept of abstraction is very impor-
tant. To solve a complex problem efficiently, a problem solver must first ignore
low level details and concentrate on the essential features of the problem. The
details are filled in after the problem has been solved at a higher level. There-
fore, abstraction formation involves loss of content, which makes the abstraction
simpler than its instantiation(s) (Darden, 1987; Korf, 1987). This idea has been
used in problem solving for a long time (Polya, 1957) and adopted by several
general-purpose problem-solving programs, including General Problem Solver
(GPS) (Newell and Simon, 1972) and ABSTRIP (Sacerdoti, 1974).

In the model management arena, Dolk and Konsynski (1984) first adopted
the term “‘abstraction’’ and presented a model abstraction technique. In fact,
despite grounding in different formalisms, most model representation schemes
presented in previous research reflect different levels of model abstraction, from
user-oriented to execution-oriented. For example, Blanning (1982, 1985a, b,
1986) emphasizes the manipulation of data relations (data level); Liang (1985)
focuses on the mapping between inputs and outputs (model level); Geoffrion
(1985, 1987) presents a hierarchical framework for structured modeling (struc-
ture level); Dolk (1986) and Dolk and Konsynski (1984) concentirate on model
specification (specification level). Figure 2 illustrates those five levels of ab-
straction for the EOQ model that calculates economic order quantity from de-
mand, holding cost, and ordering cost.

Program Level

At the bottom of the hierarchy is a Pascal implementation of the economic
order quantity (EOQ) model. This reflects a highly machine-oriented view of
decision models. The advantage of this representation is that the model can be
stored in a model base and be readily integrated and compiled for execution. Its
major disadvantage, however, is that little information relevant to model man-
agement is provided. For example, it provides little input and output information
and can be activated by the model name only.

Specification Level

By ignoring some implementation details, Dolk and Konsynski (1984) devel-
oped a frame-based model abstraction technique. This technique represents
models by their data objects, procedures, and assertions, all expressed in first-
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Furction EOQ(D,S,H:real):real;
Begin
EOQ := sqri(2"D*S/H)
END;

FIGURE 2. Hierarchy of model abstraction.
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order predicate logic. An abstraction for the EOQ model is shown at the specifi-
cation level in Fig. 2. ‘

The contents lost at this level of abstraction are implementation details and
direct computer executability. However, it gains computer Janguage indepen-
dence. The same specification may have interfaces to programs in different
computer languages. An early work conducted by Elam et al. (1980) also repre-
sented models at a similar level of abstraction but in a graphical form. They
adopted the concept of SI nets in artificial intelligence.

This level of model abstraction provides information useful to model build-
ers. From a modeling perspective, however, this information can be further
stratified based on its relative priority. For example, some low-level operations,
such as checking data formats, may substantially increase the complexity of
model integration and need not be considered until a set of potential model
combinations has been identified. Therefore, further abstraction is desirable.

Structure Level

Geoffrion’s framework for structured modeling further eliminates some in-
tegrity constraints and data formats. It portrays the fundamental structure of a
model by its elemental structure, generic graphs, and modular structure.

One feature of structured modeling is the use of graphical symbols rather
than text-based specifications, which make the functional relationships among
various modules very clear. In Geoffrion’s framework, nodes stand for modeling
elements and arcs stand for calls. A modular structure of the EOQ model, as
shown in Fig. 2, contains four nodes and three arcs.

A graph-based model structure provides certain insights into a model. For
the purpose of model integration, however, representing the detailed structure
may not be necessary in many situations. This is particularly true when the
model is nondecomposable. For example, the mapping between demand and
‘order quantity in the EOQ model cannot be used independently unless the order-
ing cost and holding cost are also present. In other words, those three data
attributes, in combination, determine the EOQ. Therefore, the three arcs of the
EOQ model are highly dependent and can be combined.

Model Level

By considering each model stored in the model base as a bridge or a map-
ping between input and output, Liang’s approach uses a node to represent a set
of data attributes and an arc to represent a set of functions that can be used to
convert from one node to another. Since a model is composed of inputs, outputs,
and a set of functions for converting inputs to outputs, it can be represented as a
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combination of two nodes and one arc. For example, the EOQ is a mapping
between two sets, [Demand, O_cost, H_cost] and [Quantity].

Because each model in the model base is considered a single mapping, this
approach allows an associated cost or validity value to be estimated for each
model. This is important when algorithms and heuristics in graph theory are
used for model integration (Liang and Jones, 1988). ‘

Data Level

At the top of the hierarchy is a relational framework of models. Instead of
adopting artificial intelligence techniques, Blanning (1982, 1985a, b, 1986) fo-
cuses on model manipulations including join and projection. It reflects a user-
oriented view of model management: The user obtains the desired information
without all the details of calculation. For example, the EOQ model is considered
a relation composed of demand, holding cost, ordering cost, and quantity at this
level.

Model Integration Process

The hierarchical view of model abstraction indicates that an automated
model integration process should include the following steps:

1. Identify the desired information.

2. Develop a master plan for building a composite model when there 1s no
single model available for producing the desired information. The master plan
determines the sequence by which a set of models should be executed.

3. Determine the model structure and retrieve the corresponding model
specifications according to the master plan.

4. Evaluate the feasibility of the master plan by checking details such as
data format and model assumptions.

5. Combine selected programs to formulate an executable model if the mas-
ter plan is proven feasible. Otherwise, go to step 2 to develop another plan.

For example, if the inventory holding cost is not a constant but determined
by a holding cost model with interest expenses and warehouse operation costs as
its inputs, then calculating the economic order quantity involves an integration
of two models: EOQ and the holding cost model. First, the MMS finds that the
table (shown at the top of Fig. 3) requested by the user contains information
from more than one model. Then the system develops a master plan for execut-
ing the selected models. In this example, the sequence is (1) the holding cost
model and (2) the EOQ model. On the basis of master plan the structure of the
composite model can be determined and validated. By “‘validated™ we mean that
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all integrity constraints and data formats are checked to assure that the devel-
oped model is suitable for a particular decision. Figure 3 shows the correspond-
ing representations at the data level, model level, and structure level. Finally,
specifications and executable programs can be activated and executed.

REASONING FOR MODEL INTEGRATION

The key step in the model integration process described above is the devel-
opment of a master plan. Unless a sequence of models is found capable of
producing the desired information, there is no need to check the integrity con-
straint or data format. Therefore, each state in the modeling process can be
represented as a set of data attributes. Each state in the modeling process can be
represented as a set of data attributes. Each model stored in the model base is
considered an operator that converts one state into another. For instance, the
EOQ model 1s an operator that converts the state [Demand, O_cost, H_cost] to
another state [Quantity].

By those definitions, the initial state is composed of all available information
and the goal state is the information desired by the decision maker. The develop-
ment of a master plan for model integration is a process in which operators are
scheduled to convert the initial state to a specified goal state by sequentially
achieving a set of subgoals.

Two issues are crucial to developing such a master plan. First, how can the
proper candidate models be selected from the model base? Second, how can the
selected models be scheduled efficiently?

Selection of Candidate Models

Model selection 1s a two-stage process. First, given the desired information,
existing models that may be useful for constructing the composite model must be
identified. This process includes the following procedures:

1. Determine whether a model can produce all or part of the desired infor-
mation.

2. Check the availability of the model in the model base.

3. Compare the identified models to eliminate dominated models. This step
reduces the number of candidate models and simplifies the process of model
scheduling.

4. Check model assumptions and other integrity constraints based on the
problem description to reduce the number of candidates further.

After locating candidate models, the MMS schedules these primitive models
to formulate a composite model. When more than one composite model is avail-
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FIGURE 3. Three levels of model integration.

able for solving the problem, the second stage of model selection is activated. It
allows various composite models to be examined based on the assumptions,
compatibility, and other ihtegrity constraints of their member models. If the user
is not satisfied with the constructed model, then the process may be repeated.
Figure 4 illustrates the process. In a semi-automatic system, the identification
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FIGURE 4. Process for model formulation.

and selection of primitive models may be handled by the system, but the selec-
tion of the formulated model is made by the user.

Generic Reasoning Strategies

In some situations, identification and scheduling of primitive models are
interwoven. In this case, there are three generic strategies that may be employed
for model integration: forward reasoning, backward reasoning, and bidirectional
reasoning. Each strategy has its advantages and drawbacks. Heuristics may also
be used to increase the efficiency of the process. The generic strategies de-
scribed in this section are based on exhaustive searches. Heuristic functions will
be presented in the next section.

The forward reasoning strategy requires the system to start from the initial
state and search proper candidates based on the available information. There-
fore, it is also called data-directed reasoning. This strategy is appropriate when
the goal state is complex but the amount of initial information is relatively small.
The algorithm described below applies this strategy to model integration. The
queue produced by this algorithm is the master plan for converting the initial
state that contains all available inputs, INITIAL, to the goal state that includes
the desired output information, GOAL.

REPEAT

1. Find an operator, OP, that can convert a state, IN, to another state,
OUT, where IN is a subset of the initial state, INITIAL;

2. Add OP to a queue and define anew initial state,

NEWSTATE = (INITIAL UOUT) - IN;
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3. Set INITIAL = NEWSTATE
UNTIL GOAL & INITIAL.

The backward reasoning strategy is output-directed, which requires the Sys-
tem to work backward from the goal state, using facts in the data base to prove
it. It works well when the goal state contains a relatively limited number of
outputs, and the initial state includes a large amount of input information. A
backward model integration process results in a stack which represents a master
plan.

REPEAT
1. Find an operator, OP, that converts IN to OUT, where

OUT N GOAL < 0;

2. Add OP to a stack and define a subgoal state,
SUBGOAL = (IN U GOAL) - OUT;

3. Set GOAL = SUBGOAL

UNTIL GCAL = INITIAL.

Bidirectional reasoning uses forward and backward strategies simulta-
neously. Its major advantage is that it decomposes a problem into two parts,_
which can reduce the complexity when the number of nodes at each step grows
exponentially with the number of steps that have been taken. The risk of using
this strategy is that the two searches may pass each other, resulting in more work
than it would have taken for either one.

Because the amount of available information is usually much larger than the
amount of desired information in most modeling situations, backward reasoning
is more appropriate for developing a master plan for model integration. The
other two strategies, however, may be useful for explaining the modeling pro-
cess and helping the user understand the causal relationships between inputs and
outputs.

Instead of defining the whole set of desired information as the goal state, a
modified backward reasoning strategy, called difference elimination, focuses on
the difference between the desired state and the initial state. Since part of the
desired information may be readily available from the data base, ignoring the
information available in the initial state can simplify the goal state and hence
reduce the complexity of the reasoning process. In this case, the model integra-
tion process can be defined as a process by which the difference between the
desired information and the available information can be completely eliminated.
The reasoning process for difference elimination can be described as follows:

REPEAT
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1. Set the goal state as the difference between the desired information
and the available information,

GOAL = DESIRED = INITIAL;
2. Find an operator, 0P, that converts IN to OUT, where
OUT N GOAL <> 9;
3. Add OP to a stack and define a subgoal, SUBGOAL = (IN U GOAL) - OUT;

4. Set GOAL = SUBGOAL - INITIAL;
UNTIL GOAL = [].

Heuristic Search

Although the difference elimination process may reduce the complexity of
the goal state, it still relies on exhaustive search. To improve the efficiency of
the search process further, two techniques may be used in model integration:
macro-operators and heuristic evaluation functions.

Macro-Operators

A macro-operator is a sequence of primitive operators. Because the se-
quence is predetermined, there is no need for search. In fact, the major purpose
of model integration is to design a macro-operator that can be used to solve a
particular problem. The issue, then, is how to use macro-operators to improve
the efficiency of modeling. A macro-operator is both the result of a modeling
process and a tool for modeling. A master plan developed for solving a previous
problem can be saved as a macro-operator for later use. When a new problem
includes the previously solved problem as a subproblem, the macro-operator
previously developed can be retrieved and fitted directly into the master plan for
solving the new problem. From this perspective a model integration process is
also a learning process by which macro-operators are learned.

Using macro-operators involves a trade off between model storage costs and
modeling costs. On the one hand, the extensive use of macro-operators needs a
large amount of computer memory for storage. On the other, lack of macro-
operators needs extensive search in the modeling process. Therefore, an impor-
tant issue here is the extent to which macro-operators should be used.

In general, there are two criteria for determining proper use of macro-
operators: functional dependency and frequency of use. A model is defined as
functionally dependent on another model if at least one input of the former is
among the output of the latter. If there exists a set of functionally dependent
models, then they may be grouped into a macro-operator.

Determining functional dependency is also important for model scheduling,
Model B must be scheduled before model A when model A is functionally
dependent on model B. In addition, a set of functionally dependent models may
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result in a cycle, which traps the system into an infinite loop. In this case,
mechanisms for detecting and resolving loops must be applied.

Another factor to be considered is the frequency of model utilization. If a
particular sequence of operators is used frequently, then it may be appropriate to
save them as a macro-operator. Otherwise, it may be unnecessary. For example,
if the holding cost model and the EOQ model shown in Fig. 3 are usually used
together in an organization, then it may be stored as a macro-operator consisting
of these two models to create a mapping from [Demand, O_cost, W_cost,
I_cost] to [Quantity].

Heuristic Function

In addition to macro-operators, heuristic functions may be used to guide a
search process. The major purpose of a heuristic function is to estimate how
close a particular state is to the goal state so that the system can select the best
search direction accordingly. In general, a heuristic evaluation function provides
a numerical estimation of the promise of a state, which may depend on the
criteria used in the function, the description of the goal, and the information
gathered by the search up to that point.

Intuitively, there are several criteria that may be used to estimate the prom-
ise of a state, such as model applicability, machine capacity, modeling costs, and
user preference. Model applicability uses context-dependent measures to evalu-
ate the applicability of a model to a particular problem. For example, when the
problem is identified as an inventory problem, then the EOQ model may have a
higher value when compared with a capital budgeting model.

By using machine capacity or modeling costs as the major criterion requires
that a heuristic evaluation function be used to assess the anticipated machine
capacity or modeling costs for each state before selecting the best direction for
further exploration. It focuses on developing efficient or cost-effective models.
User preference is a subjective measure of model applicability. Its goal is to
develop the most satisfactory model for a particular user. Although most of these
measures are related to model construction, they are more appropriate for evalu-
ating the formulated master plan than for directing its construction.

A more proper criterion for developing a master plan for model integration
is the distance between the resulting subgoal state and the ultimate goal state
after applying the model. Since each state represents a set of data attributes, the
distance between two states can be defined as the difference between the number
of items contained in those two states. For example, the distance between state
A and state B in Fig. 5 is 1, because the arc reduces the number of items in the
goal state from 5 to 4.

Because the difference elimination process is basically a backward reasoning
process, the system should pursue an operator that results in a state far from the
goal state. In other words, the system will select the model that eliminates the
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FIGURE 5. Distance between two states.

largest number of items from the desired goal state. This presumably would
develop a master plan in the shortest time with a minimum number of basic
models. '

One point that needs to be addressed is that cycles must be eliminated during
the planning process. A cycle is a situation in which an input of model i is the
output of another model j that includes at least one output of model i as its input.
The existence of a cycle can lead to an infinite loop in the reasoning process and
hence must be detected and removed. By taking advantage of the distance-based
heuristic evaluation function, the reasoning process for model integration is
modified as follows:

REPEAT

1.

6.

7.
8.

Set the goal state as the difference between the desired information
and the available information,

GOAL = DESIRED - INITIAL;

Findall operators, OPS, each of which results inanQUT state, where QUT
N GoAL =0;

Check functional dependencies and cyclicity to exclude the operators
functianally dependent on others and remove Loops;

. Determine the resulting subgoal for each of the remaining operators

that converts IN to OUT, SUBGOAL = (IN U GOAL) - OUT;

Calculate the distance for each of the possible subgoals,
Distance(GOAL,SUBGOAL) = Item(GOAL) - Item(GDAL) - Item(SUBGOAL);
Select the operator with the longest distance, OP, which converts IN to
ouT;

Add OP to a stack and define a subgoal, SUBGOAL = (IN U GOAL) - OUT;

Set GOAL = SUBGOAL — INITIAL;

UNTIL GOAL=[].

TIMMS: AN IMPLEMENTATION

On the basis of previously described reasoning mechanism, a model man-
agement system called TIMMS has been implemented .in PROLOG (see Liang
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[1988] for a detailed description of the system). The system includes a model
construction module that constructs composite models by integrating the models
stored in the model base, a model utilization system that facilitates the use of the
constructed models, and an inference engine that links the model base, data
base, and knowledge base. Figure 6 shows the architecture of the system.

TIMMS uses a SQL-like language to interact with the user. The user speci-
fies the desired information, and the system retrieves it from the data base if it is
available. Otherwise, the system searches the model base to find a model that
generates the information. If there exists a model capable of producing the
information, then the system activates and executes the model to provide the
output to the user. If no existing model is found in the model base, then the
system activates the model integration mechanism to construct a master plan for
model integration and executes the plan to produce the output upon request by
the user. . ‘

For example, we assume that the system maintains a data base containing
ordering and holding costs and annual sales up to 1990 and a model base con-
taining an inventory control model for calculating the EOQ and three sales
forecasting models for predicting sales for 1991. If the user needs to know EOQ
for 1991, the system cannot find the information in the data base. Therefore, it
searches the model base to find the inventory control model. To execute the
model, however, the system finds that a predicted sales for 1991 is necessary.
The system again finds that the information may be generated by a sales fore-
casting model. The model integration mechanism then constructs a master plan
that integrates a sales forecasting model and the inventory control model. Figure
7 illustrates a sample session. The user may ask for an explanation of the com-
posite model. Figure 8 shows a sample explanation screen.

Appendix 1 lists a sample PROLOG implementation of the difference elimi-
nation process for developing the master plan for model integration. The PRO-
LOG implementation shows the following modules: (1) a main planning module
for defining goals and subgoals, (2) a difference determination module for find-
ing the difference, (3) a dependency checking module, and (4) a heuristic evalu-
ation function for selecting the best operator.

Since the modeling process is a cooperative process between the user and
the system (see Fig. 1), the system should allow the user to examine the details
of the models and decide whether the model is an acceptable one. In the selec-
tion process, the user may ask the system to go from the master plan down to the
structure, specification, or even program level shown in Fig. 2 to check assump-
tions, integrity constraints, and data formats. If a certain plan is not acceptable
or if there is a violation of the assumptions of member models, then the user
may reject the proposed model to examine the next available alternative.
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o TIMMS: QUERY PROCESSING SUBSYSTEM  #*

*x*:*************!!t*t*x*xaﬁ***t:x*******tta******txx#***&**#****
Please specifv the information yon need:
QUTEUT; eoq
WHERE:
product = g

Year = 1891

Please wait while checking the database
‘eoq for a for 1991’ is not available in the database

I am checking the model base

‘dernand for a for 1881 is needed but not available in the database
Could you provide it (y/n)? g

’price of a' is needed but not available in the database
Could you provide it (y/a)? v

Please enter the value: 10

MY SUGGESTIONS

There are three ways to produce the requested output.
The first is: Integrating model M1’ and model M2’
Execute 'M1’ to generate 'eoq for a for 1991’
The execution of 'M1" needs the following three inputs:
- holding_cost of a
~ ordering_ cost of a
-- demand for a for 1991
The database has ..., holding cost ofa = §
The database has .......... ordering_cost of a = 20
"demand for a for 1991" can be generated by executing model "M2’
The execution of "M2' needs the following 1 input:
-« price of a
You provided ......... price of a = 10
Do you want to execute this model (y/2)? v
= eoq for a for 1991 = 12

More suggestions? {y/n)? n

THANK YOU

FIGURE 7. A sample session.

CONCLUDING REMARKS

Developing a master plan is a key step in model integration. In this paper we
have discussed several key issues. First, a hierarchy of model abstraction has
been described. Then, various reasoning strategies have been presented. They
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The model is an integration of the following models:

Wk Ml * %

Ml‘is a mode]' for computing the economic order quantity, It needs three kinds
of inpuls: poldmg cost, ordering cost, and demand for the year. The formula
for computing the order cost quantity is as follows:

2 * prdering cost * demand 12
eoq = (__ )
holding cost

ok 2

M2 is a demand forecasting model which forecasis future demand according 1o
a pre-defined demand funciion, as follows:

demard = 2000/unit price

<<PRESS ANY KEY TO CONTINUE>>

FIGURE 8. A sample explanation screen.

include forward, backward, and bidirectional strategies and a modified back-
ward strategy called difference elimination. A heuristic evaluation function for
improving the reasoning efficiency has also been developed. Finally, TIMMS,
an implementation in PROLOG, is briefly described.

Since reasoning for model integration.is critical to the successful develop-
ment of MMS, further research that investigates the following issues is required
before a practical system can be developed. First, how can various levels of
abstraction be integrated into a single system? Efficient algorithms must be
developed to link representations at different levels. Second, how can operators
and macro-operators be determined? In this paper, the issue has been briefly
discussed. Two criteria, functional dependency and frequency of use, have been
described, but more detailed discussions are needed. Third, how can heuristic
evaluation functions be developed and evaluated? A measure of the distance
between two states and a distance-based heuristic evaluation function have been
presented. This, however, should not be considered the only method. Further
research is needed to explore alternative measures of the distance between states
and to evaluate various measures to find the most appropriate one.
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APPENDIX 1: A PROLOG IMPLEMENTATION
OF THE REASONING MECHANISM

model_integration:-
write('Output attributes ="'), read (GOAL),
write('Input Attributes ="'), read (START) ,nl,
write('** Modelinggoal ="'}, write(GOAL),nl,nl,
modebting (START ,GOAL,START,ACTS) ,nl,
write('+**% The master plan is to execute the following'),
nl,Wwrite('models sequentially:'),nl,nlL,
write(ACTS) .

modeling (STARTSTATE,GOAL,STARTSTATE, [1):-
satisfy (STARTSTATE,GOAL),!.

modeling(STARTSTATE, GOAL,ENDSTATE,ACTS) :-
majordi ff(STARTSTATE,GOAL,DIFF),
findal L__acts(STARTSTATE,DIFF,ALLACT) R
write{'all possible candidates = '), write (ALLACT) ,nl,
check dependency (ALLACT,RESTACT),
write{'Independent candidate = '),write(RESTACT),nl,
heuristic(RESTACT,ACT,V),
write('Selected action by a heuristic ="),write(ACT),nl,
subgoal (STARTSTATE,DIFF,ACT,START1,SUBGOAL) ,
nt,write("** New subgoal = ') ,write(SUBGOAL) ,nl,nl,
mude[‘ing (START1, SUBGOAL,__,ACT'!) R
append (ACT1,ACT,ACTS).

satisfy(STARTSTATE,GOAL) :-
subset (GOAL,STARTSTATE).

check_dependency ([X],[X]1).
check_dependency(ALLACT,RESTACT) :-
all in(ALLACT,TIN),
del _prereq(ALLACT,TIN,RESTACT).

all_inC{1,E1).

all_in(laCACT, V)1, TIN):-
mode L CACT, TIND .

all_inC(la(ACT,V))|REST],TIN):-
mode L CACT, IN,OUT),
all_in(REST,TIN1),
union{IN,TINT,TIN).

del prereq([},[1).
del prereq(la(ACT,V)|REST],TIN,RESTACT) :—
model CACT, IN,OUT),
subset (OUT,TIN),
del_pr‘er‘eq(REST,TIN,RESTACT) .
del.___pr‘er‘eq([a(ACT,V)iREST] L, TIN, [a(ACT,V)|RESTACT]) -
del_prereq(REST,TIN,RESTACT).
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/* Deteﬁmining major difference between START and GOAL */

majordiff(_,L1,01).

majordiff(START,[XR1,Z}Y:~
member{X,START),!,
majordiff(START,R,2).

majordiff(START, [X|R],[X|Z]) -
majordi ff(START,R,Z).

/% Submodels reguired for bridging the difference between the starting
state and the goal */ :

findall_ﬁcts(STARTSTATE,DIFF,ALLACT):-
mode L CACT, IN,QUT),
intersection(OUT,DIFF,CONT),
CONTN = [1,
listlength(CONT,L1),
majordiff(STARTSTATE,IN,NEG),
listiength{(NEG,LZ2),
LisLl1-1L2,
assertz(stack(a(ACT,L))) , fail;
assertz(stackfafend,[133),
collect (ALLACT.

collect (ALLACT) :—-
retract(stack(X)3,!,
(X ==alend,[1),!, ALLACT = [];
ALLACT = [X,REST],collect (REST)).

heuristic(la(ACT,v)1,[ACTI, V).
heuristic([a(ACT1,V1)jRESTI, [ACTII, V1) -
heuristic(REST,[BestALT],¥Max},
V1 >= VMax. )
heuristic([a(ACT1,V1HREST],[BestACT],VMax):-
heuristic(REST,[BestACT],VMax},
V1 < YMax.

/* finding subgoals */

subgoal(STARTSTATE,DIFF,EACT],START1,SUBGOAL):-
model (ACT, IN,OUT),
union(STARTSTATE,QUT,STARTT),
union{DIFF,IN,GOAL),
Majordiff(START1,G0AL,SUBGOAL).

/% Utilities */

append ([1,L,0).
append([MX],Y,[MZ]):—append(X,Y,Z).

member (X, [X_1).
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member (X, [_|Y]) :~member{X,Y).
subset ([A|X],Y) :-member{A,Y),subset(X,Y).
subset ([1,Y).

Intersection(C],X,[]1).

intersection(LA|R],Y,[A|Z]):~
member{A,Y),!,intersection(R,Y,Z).

intersection([A|R},Y,2Z):-intersection(R,Y,Z).

listlength(C1,0).

listlength([HR]I,L):-
Listlength(Rr, L1},
Lis L1+ 1.

union(l],%,X).
union([H|T],Y,Z) :—-member(Y,Y),!,union(T,Y,Z).
union(CH|T],Y,[HZ1) :-union(T,Y,2).
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