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This paper presents a sofiware architecture and a graph-based famework for developing knowledge-based model
management systems. The architecture consists of three major components: a model utilization subsystem, a modeling
subsystem. and an inference engine. The core of the system is the inference engine that applies the graph-based framework
10 drive the processes of model integration and selection. The graph-based framework includes a model representation
scheme and reasoning mechanisms. The representation scheme depicts a set of data as a node, a set of functions as an
edge, and a basic model as a combination of two nodes and one connecting edge. Based on this scheme, mechanisms for
model integration and selection are discussed. These mechanisms enable a mode! management system to create composite
models automatically. A prototype implemented in PROLOG is also presented to demonstrate the graph-based

framework.

ecision Support Systems (DSS) are computer-
based information systems that support
semistructured or unstructured decisions. Due to the
complexity of these decisions, using proper models
can significantly improve human performance by fa-
cilitating understanding about the decision problem,
examining more alternatives, or enhancing prediction
(Little 1970). Therefore, a model management system
(MMS) that supports the development of decision
models and their subsequent use has been considered
crucial to the success of DSS (Alter 1980; Bonczek,
Holsapple and Whinston 1981b; Elam 1980; Keen
and Scott Morton 1978; Sprague and Carlson 1982;
Stohr and Tanniru 1980).

Early research in MMS: considered models as data
or subroutines and proposed that an MMS must sup-
port model creation, storage, retrieval, execution, and
maintenance (Sprague and Watson 1975; Will 1975).

Recent research primarily focused on two issues:

mode! base organization and model representation. A
model base is a repository of decision models. On the
one hand, because the model base and the data base
are similar in many aspects, researchers have studied
the application of data models, such as the relational
mode! (Codd 1970), to the development of MMS
(Blanning 1982, 1983, 1984, 1985: Donovan 1976).
On the other hand, because of the knowledge intensive
nature of models, some researchers concentrated on
adopting knowledge representation techniques devel-
oped in antificial intelligence to represent models in

the model base. The model! representation schemes
investigated include Sl-nets (Elam, Henderson and
Miiler 1980), knowledge abstractions (Dolk 1982;
Dolk and Konsynski 1984; Konsynski and Dolk
1982), predicate calculus {(Bonczek, Holsapple, and
Whinston 1980, 1981a), and frame-based systems
(Watson 1983). Development of MMS needs both a
model base organization for model storage and an
appropriate technique for model representation.

In addition to these two issues, however, it is very
important for an MMS to have the capabilities of
model integration and selection. The capability of
model integration allows an MMS to create a compli-
cated model by integrating existing models in the
mode! base. In this case, the models stored in the
model base are stand-alone decision models and build-
ing blocks for creating new models. The capability of
model selection helps the user determine what models
are available to produce the requested information
and then automatically selects or allows the user to
select a model for execution. With these capabilities,
an MMS can better support decision makers by for-
mulating ad hoc models to meet unanticipated re-
quirements quickly. An MMS that supports model
integration and selection is called a knowledge-based
MMS.

This paper introduces an expert systems approach
1o building such capabilities in MMS, with emphasis
on the design of graph-based mechanisms for driving
the process of model integration. The remainder of
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this paper is organized as follows. First, an architecture
for MMS design is presented. The architecture is
composed of three functional modules: a model utili-
zation subsystem, a modeling subsystem, and an
inference engine. Then, a graph-based approach to
designing the inference engine is presented. It includes
a graph-based representation scheme and mechanisms
for model integration and selection. The graph-based
scheme provides an interface through which algo-
rithms and heuristics developed in artificial intelli-
gence and graph theory can be applied to model
management. Finally, TIMMS (The Integrated Model
Management System), a prototype implemented in

PROLOG, is described to illustrate the graph-based
approach. Sample sessions are also presented. Suc-
cessful implementation of the architecture and mech-
anisms indicates a promising integration of operations
research, artificial intelligence, and DSS research.

1. Architecture for a Knowledge-Based MMS

Since the processes of model integration and selection
involve reasoning and judgment, an architecture dif-
ferent from traditional DSS architectures must be used
to develop a knowledge-based MMS. Figure 1 illus-
trates an architecture adapted from expert system

Query Report Help Knowledge LIser-assisted Automatic
Processing Generation Maodule Acquisition Modeling Modeling
: y'y 'y
Model Explanation : Strategy
Modeling
Utilization Data
Subsystem Validation
Subsystem Acquisition
Inference Engine
- Inference Control
h 4
Knowledge Base Modsl Basa Data Base
Logical Executable
Rules Facts Model Repre-| Models and Data
‘ sentations Tools

Figure 1. A software architecture for MMS,
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research. The architecture includes two major subsys-
tems: modeling and model utilization. The modeling
subsystem focuses on improving the productivity of
model builders, whereas, the model utilization subsys-
tem concentrates on effective use of models. In addi-
tion, an inference engine is required to drive the
processes of model integration and selection, and to
integrate three basic components: model base, data
base, and knowledge base. Basic models are stored in
the model base; data pertaining to decision making
are stored in the data base; and the knowledge regard-
ing effective use of the models in the model base and
the data in the data base is stored in the knowledge
base.

To support the effective use of models, the model
utilization subsystem should be able to accept user
queries, report results to the user, and provide helpful
messages in the course of consultation. In other words,
it should have three major functions: query process-
ing, report generation, and help. The query processor
is the interface between decision makers and the sys-
tem, It translates a user’s query into a set of commands
understood by the system. The report generator pro-
vides the requested output in a format the user prefers.
The help module provides helpful messages such as
how the results were generated.

The modeling subsystem is designed to support the
model builder, who is responsible for developing use-
ful models. It should have three major functions:
knowledge acquisition, user assisted modeling, and
automatic modeling. The MMS acquires knowledge
of models, such as integrity constraints, through the
model acquisition module, whereas, the model builder
interacts with the user assisted or automatic modeling
modules to create new models or modify existing
models.

The inference engine is the heart of a knowledge-
based MMS. It performs two major functions: infer-
ence and control. The model utilization or modeling
subsystem translates a user’s request into commands
understood by the system. Then, the inference engine
executes the commands, controls access to the data
base and the model base, retrieves knowledge from
the knowledge base, and makes inferences, if neces-
sary. After obtaining the required information or prov-
ing that it is not available, the inference engine passes

messages back to those two subsystems and then re- -

ports the result to the user.

The inference engine has three major inference
mechanisms: ) integrating the data base and the
model base, 2) integrating models in the mode! base,
and 3) controlling the execution of a selected model.

The first mechanism controls the access of the data
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base and the model base. For any query, the MMS
first searches the data base. If the information is
available in the data base, it will be retrieved. Other-
wise, the system will search the model base and see
whether there is a set of models available for producing
the information. If there is any model available, the
mechanism will check the availability of its inputs and
then retrieve the inputs to execute the model (Liang
1685).

If no basic model in the model base is available to
produce the required information, the second mech-
anism will take over and try to develop executable
composite models. A detailed discusston of a graph-
based mechanism will be presented in the next section.

After the model for producing the desired infor-
mation is chosen, the mechanism for model execution
will be activated to schedule the integrated component
models and make sure that they are executed in a

Proper sequence.

2. A Graph-Based Inference Mechanism

The discussion in the previous section indicated that
the mechanism for integrating models is at the heart
of a knowledge-based MMS. Although research in
MMS has increased dramatically in the past decade,
little has focused on this important issue. Recently,
Geoffrion proposed an approach called structured
modeling, which focuses on exploring functional re-
lationships among the modules constituting a model
during the modeling process (Geoffrion 1985, 1987).
The graph-based approach presented in this section is
built on the concept of Geoffrion’s work and deals
with the following essential issues:

1. representation of models,
2. algorithm for integrating models, and
3. algonthm for selecting models.

The major difference between the proposed ap-
proach and structured modeling is that the former
considers each model in the model base as a single
entity, whereas the latter focuses on the structural
relationships within a model. In fact, the former ap-
proach reflects a higher level abstraction on which
heuristics and algorithms may be developed to auto-
mate the modeling process. Detailed discussions on
different levels of abstraction can be found in (Liang
1988).

2.1. Graphical Representation of Mcdeis

Since problem solving is often described as a search
through a vast maze of possibilities (Simon 1981), we
can describe the process of human modeling as a
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search through a number of possible relationships in
order 1o find a route which can convert the initial
state (available information) of a problem to the de-
sired final state (output information). By this concept,
models in the model base can be represented by two
basic elements: nodes and edges. The modeling pro-
cess can be formulated as a process that creates a
directed graph and selects a path on the graph. The
directed graph, called a model graph, represents all
possible alternatives for solving the problem and each
path in the graph represents a model. These terms can
be formally defined as follows.

e1

Demand, EQQ
Holding cost,
Ordering cost

{a) Graphical Representation
of the EOQ Model

Demand +
Holding cost +
Ordering cost

Ordering
Cost

{¢) An Example of AND Nodas

Definition 1. Node—. A node, N, represents a set of
data attributes. It could be the inputs or the outpuls
of a set of models.

Exampie

In Figure 2a, node A4 represents a set of data including
the demand, holding cost, and ordering cost. Node B
represents the computed economic order quantity

(EOQ).

Nodes represent states. We also need edges to ind:i-
cate transformation of states.

a

e
=

Demand
{N-15,..,N} {(N+1)

Wherg: a: Moving average

b: E.iponemial smoothing
c: Regrassion
d: Box-Jenkins

(b) A Ons-stage Modaling
Process

A1 | A2 A3

Whera: A1: Moving average

© A2: Regression
A3: Demand function
B1:ECQ

{d) A Two-stage Modeling process

Figure 2. Graph—based representations.



Definition 2. Edge. An edge, ¢, represents a set of
functions that convert a set of input data (the starting
node of the edge) to their associated output (the ending
node).

Example

The edge e1 in Figure 2a represents the function which
computes EOQ from the demand, holding cost, and
ordering cost.

Definition 3. Connectivity. Two nodes are connected
if there exists at least one edge that converts the data
in one node to that in another.

Example

Nodes 4 and B in Figure 2a are connected because
edge el converts the demand, holding cost, and or-
dering cost in node A to the EOQ in node B.

In practical applications, both nodes and edges
should be nonempty sets. Two connected nodes and
one edge connecting them constitute a basic model,
the smallest unit in the model base.

Definition 4. Basic Model. A basic model, M,, is a
combination of two nodes and an edge connecting the
two nodes. The starting node of the edge represents
the inputs of the basic model, and the ending node of
the edge represents the outputs of the basic model.
Hence a basic model can be represented as a triple,
(N1, e N2).

Example
The combination of {4, el, B} in Figure 2a is a basic

model.

Each basic model in the model base is a stand-alone
model, but it is also a basic element for automatic
modeling. Since there is usually more than one way

to convert a set of inputs to 4 set of oulputs, the edge

between two nodes may not be unique. That is, a
model base may have more than one model for solving
a particular problem. For example, if one wants to
forecast demand for the next year based on the de-
mand data in the last 16 years, one may wuse
the moving average, exponential smoothing, regres-

“sion, or the Box-Jenkins approach, as illustrated in -

Figure 2b. In other words, four basic demand
forecasting models in the model base, (C, a, D),
{C, b, D), (C, C, D), and {C, 4, D}, are available for
forecasting the future demand.

In addition to the case where more than one model |

15 available to produce 2 set of required outputs, it is
possible that a set of basic models, in combination,
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produce the required outputs, but each individual
model produces a subset of the required outputs. In
order to differentiate these two situations, we need to
define two types of nodes: AND nodes and OR nodes.

Definition 5. AND Node. An AND node, N, is a
node that is the ending node of more than one basic
model. Each model produces a subset of the required
output, but the combination of these models produces
the whole set of the required outputs. An AND node
is true only if all edges ending at the node are true.

Example

Node D in Figure 2c is an AND node because the
model (4, a, D) produces the demand information,
the model (B, b, D) produces the holding cost, and
the model {C, ¢, D) produces the ordering cost.
Therefore, the three models, in combination, produce
the information contained in node D, but each model
produces only a subset of the information. In this
paper, an AND node is represented as a circle.

Definition 6. OR Node. An OR node, N, is a node
that is the ending node of more than one basic model;
each model produces the entire set of required infor-
mation. An OR node is true if at least one edge ending
at the node is true. In this paper, an OR node is
represented as a square. : R -

Example

Node D in Figure 2b is an OR node because there are
four models ending at node D and each can produce
the forecasted demand.

In the human modeling process, an AND node
represents a union point where more than one set of
output data is combined to formulate the required
output; and an OR node represents a decision point
where one or more models are selected among those
available models.

Because all the four forecasting models represented
in Figure 2b produce the same set of outputs, and no
output of a model becomes an input of another model
in the graph, it can be called a one-stage graph. How-
ever, not all modeling problems are as simple as this
example. Rather, many problems may need integra-
tion of various kinds of models. By “integration,” we
mean that two or more models are combined to
become a composite model in which the output of a
model is fed into another model. For example, Figure
2d Hllustrates a two-stage graph. It represents an inte-
gration of the EOQ and demand forecasting models.
In the figure, the output of the demand forecasting

"maodels (A1, A2, or A3) are fed into the EOQ model
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(B1). Because the model base has one madel for EOQ
computation and three models for demand forecast-
ing, there are three paths (I = 3), 1., three different
models, for producing the desired information. For-
mal definitions of path, integrability and a composite
model are as follows. Because there are two different
types of nodes, the definition of a path is different
from the traditional concept.

Definition 7. Path. A Path, P, is a finite sequence of
edges of the form that

1. these edges are connected,

2. at each OR node, only one edge that enters the
node is true,

3. at each AND node, all edges that enter the node
are true.

Definition 8. Integrability. Two basic models are in-
tegrable if the input of one model and the output of
the other share common data attributes.

Definition 9. Composite Model. A composite model,
M., is a model that integrates a set of basic models.

According to the definitions previcusly described,

the concept of a model graph and the modeling process

can be defined.

Definition 10. Mode! Graph. A model graph, G, is a
graph that represents all possible models, including
basic models and composite models, for producing
the requested information. Each path in a model graph
represents a model. A model graph must be acyclic.

Example

Fxgure 2d is a mode! graph that represents models for
computing. EOQ. The model graph is composed of
three composite models. For example, path A1-B1 is
the model which forecasts demand by using the mov-
ing average technique (edge Al) and then computes
the EOQ by using the EOQ model (edge B1).

Definition 11. Modeling Process. A modeling process
is a process that includes two phases: the formulation
of a model graph and the selection of one or more
paths in the formulated model graph.

The modeling process is a logical process that for-
mulates a model graph capturing all possible paths for
producing the requested outputs and makes selection
in the graph. Because a model graph clearly represents
the relationships among relevant basic models, it be-
comes much easier for the system to provide advice
regarding model integration and selection. Based on

the model graph, an MMS may either perform model
integration and selection automatically (the automatic
modeling mode) or provide advice about model inte-
gration to the user and then allow the user to create
composite models (the user assisted modeling mode).
For implementation purposes each model graph must
be acyclic. Otherwise, the modeling process may be
infinite.

Each path in the graph implies an appropriate
model, but it does not guarantee that the model will
generate a feasible solution. For example, if a model
base contains a capital budgeting model that uses the
integer programming technique to determine the best
combination of projects for investment, the model
graph only indicates the existence of this model, but
it will not be able to tell the user whether the model
can produce a feasible solution until the model is
actually executed.

After formulating a model graph and choosing a
path in the graph, the MMS also needs a process for
executing the selected path. In graphical terms, the
model execution process can be defined as follows.

Definition 12. Execution Process. The model execu-
tion process is a process that activates a path and then
executes the models constituting the path in an appro-
priate sequence in order to generate the output.

2.2, Implementation of the Graph-Based
Representation

Concerning the implementation of a model represen-
tation method, a model can be portrayed by the
following five categories of information: 1) outputs of
the model, 2) inputs required to produce the output,
3) computational procedures used in the model, 4)
integrity constraints of the model, and 5) validity of
the model.

In other words, a basic model can be represented
by a set of five relations; each represents a unique
characteristic of the model, as follows.

INPUT (Modelname, Inputs)
OUTPUT (Modelname, Outputs)
OPERATION (Modelname, Functions)
INTEGRITY (Modelname, Constraints)
VALIDITY (Modelname, Evaluation}.

These relations should be read as “the inputs of
(modelname) include (inputl, input2, ..),” “the out-
puts of {modelname} include {output!, cutput2, ..),”
and so forth. The first four relations are important to
the formulation of a model graph, and the fifth rela-
tion {validity relation) is important to the selection of

- models.
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Corresponding to the graph-based representation,
the input and output relations are nodes for formulat-
ing a model graph. The operation relation is repre-
sented as an edge. It specifies computational functions
used in a2 model and is part of the interface between
the logical integration of models indicated in a model
graph and-the actual execution of the selected model.
A basic model, identified by a2 unique name, is a
combination of one operation relation {an edge) and
its associated input and output relations (two nodes).

The integrity relation of a model specifies con-
straints that must be satisfied before the model can be
considered applicable to a specific problem. For ex-
ample, the least squares linear regression technique
requires that the number of cases be larger than the
number of independent variables plus two. Unless this
constraint is satisfied, the sales forecasting model using
the regression approach should not be considered in
formulating the model graph.

The validity relation indicates a measure of the
fitness of a model to a particular problem. Because
the validity of 2 model can only be assessed after it
has been implemented, the validity value in the rela-
tion usually represents the historical validity of the
model in a specific context. In other words, it repre-
sents a kind of subjective confidence in the model,
based on 2 predefined model evaluation funetion or
previous experience in that specific context. For ex-
ample, in the case of forecasting future sales, our
experience indicates that the accuracy of the moving
average technique is poor for identifying the turning
pointin a trend (Chambers, Mullick and Smith 1971);
the model should have a low validity value when it is
considered for forecasting the turning point.

Figure 3 is a sample representation of the EOQ
model, The integrity constraint of the model indicates
that both the holding cost and the ordering cost must
be constants in the period. If the constraints are sat-
isfied, the validity of the model 15 0.8 on 2 0.0 to 1.0
scale.

2.3. Mechanism for Model Formulation

Formulation of a model graph involves an extensive
search in the data base and the model base. Many
heuristics have been developed for creating and tra-
versing a search tree (see Busacker and Saaty 1965;
Carre 1979; Rich 1983 or other books on graph theory
or artificial intelligence for a review). These include
depth-first search, breadth-first search, and best-first
search. For creating a model graph, the depth-first
search and the best-first search strategies are better
than the breadth-first search strategy because they
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QUTPUT(ECQModel, [Economic order quantity]}
INPUT(ECQModel, [Demand, Qrdaring cost, Holding cost])
OPERATION{EQQModal, [EQQ subroutines))
INTEGRITY(EOQModel, [Constiant(Ordaring cost,

Holding costi])
VALIDITY{EOCQModsl, [0.8])

Figure 3. Representation of the EOQ model.

support both the optimizing and the satisficing mod-
eling strategy. An MMS generates a satisfactory model
in the satisficing strategy but selects the model with
the highest validity in the optimizing strategy. In this
section, a depth-first search algorithm for creating
model graphs is presented.

The basic idea of the depth-first search is to pick up
an alternative at every node arbitrarily and work
forward from that altermative. Other alternatives at
the same level are completely ignored as long as there
is any hope of reaching the destination using the
original choice. If the original choice is proved impos-
sible to lead to a solution, then go back one level to
work on another alternative.

Suppose a user has placed a query and the requested
information is not directly available in the data base;

the procedures for applying the depth-first search to

formulate a model graph are as follows.

Step 1. Search QUTPUT relation in the model base
to see whether there is a mode!l that produces the
output.

Step 2. If no model is found, then stop searching
and report that no model is available in the model
base. The system may ask the user to develop a new
model.

Step 3. If 2 model is available, then search the
INPUT relation of the model to find the input data
required for execution.

Step 4. Repeat the following process until all inputs
are obtained or one input is proved unavailable.

4.1. Pick up an input, check whether it is an output

of its preceding model (check for acyclicity).

a. If it is true, then drop this model and go to
Step 3.

b. If it is not true or the model does not have
any preceding model, then skip this proce-
dure. -

4.2, Search the data base for availability.

a. If the input is available in the data base,
then retrieve its value and go to Step 4.1.

b. Ifthe input is not available in the data base,
then go to Step 4.3.
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4.3. Search the OUTPUT relation of the model to
see whether it can be produced by a model in
the model base.

a. If no model is available, then go to Step 4.4.
b. If 2 model is found, then go to Step 4.5.

4.4. Prompt the user for the input.

a. If it is provided by the user, then obtain its
value and go to Step 4.1.
b. Otherwise, drop the model.

4.5, Search the INPUT relation of the model to
find input data required for execution. Repeat
Step 4 until all input data have been obtained
or one input is proved unavailable.

Step 5. If all input data are available, then check

integrity constraints.

5.1. If any integrity constraint is not satisfied, then
drop the model.

5.2. 1f all constraints are satisfied, then add the
model to the model graph.

Step 6. Check whether there is another model for

producing the desired information.
6.1. If there is another model, then go to Step 3.

"~ 6.2- Otherwise, stop the process and then provide

advice based on the-formulated model graph.

Figure 4 illustrates the process fqr-formulating a
model graph. The circled numbers in the figure -are
corresponding steps. A proof of the generality of this
mechanism is presented in Appendix 1.

The procedures of the best-first search are basically
the same as that of the depth-first search, except that
the former employs an evaluation function to evaluate
the potential of all possible paths before further inves-
tigation and gives higher priority to better paths in
order to make sure that models with higher validities
will be examined earlier. There are certainly other
possible approaches for building model graphs. They
will not be discussed here, however, because they may
be derived from the procedures described before.

In this mechanism, if the operation that picks up
an input of a model and searches for the availability
of the specific input is considered a basic operation
in the model base and represented as an edge, then
the formulated model graph will be an alternate
AND/OR tree.

Definition 13. Tree. A tree, T, is a graph containing
one or more nodes such that

1. there is a specially designed node called a root,
2. the remaining nodes are partitioned into n (n = 0)

disjoint.sets T'1, ..., Tn where each of these sets
is also a tree. T'1, ..., Tn are called the subtrees
of the root.

Definition 14. AND/OR Tree. An AND/OR treeisa
tree that includes both AND nodes and OR nodes.

Definition 15. Alternate AND/OR Tree. An allernate
AND/OR tree is a tree in which the AND node and
OR node appear at alternate levels. In other words, if
nodes at level m are AND nodes. then the nodes at
level m + | must be OR nodes.

Example

Figure 5 illustrates an alternate AND/OR graph. It is
the model graph formulated by the above algorithm
for providing advice about the EOQ and demand
forecasting problem described in the first section.

Proposition 1. The model graph formulated in the
above algorithm is an alternate AND/OR tree.

A proof of this proposition is given in Appendix 2.

2.4 Strategies for Model Selection

Given the mechanism for formulating model graphs,
there are two different strategies for providing advice:
optimizing and satisficing. The optimizing strategy
requires that an MMS formulate a complete model
graph and then evaluate all paths in the graph to find
the best alternative, If validities of all models in the
model- graph are available, then the optimizing strat-
egy is simply to maximize the validity of the selected
path. This can be formulated as a maximum validity
flow problem subject to the constraints of modeling
time, modeling costs, and other considerations. In this
case, algorithms may be applied to find the path with
the highest validity (i.c., the best composite model}.
Although the optimizing strategy guarantees that,
given the criteria, the formulated model is the best
available, the combinatorial explosion in the model
graph formulation process sometimes makes it
unrealistic for a system to develop a complete
model graph, and hence, forces a system to adopt
the satisficing strategy. For example, in a model graph
with b branches at each node and 4 levels of depth, a
depth-first iterative deepening algorithm would take
O(b*) time to find the optimum solution (Korf 1987).
The satisficing strategy, on the other hand, requires
that each path be evalvated immediately after it is
found and accepted if it is satisfactory. Therefore,
formulation of a complete model graph may not be
necessary. In this strategy, the MMS follows the same
process for formulating a model graph except that
every path is evaluated at the time it is formulated. If
a satisfactory path has been found, the process for
formulating the model graph is terminated and the
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Figure 4. Process for formulating a model graph.

path is chosen to produce the desired information.
Figure 6-briefly illustrates the modeling process for
implementing the satisficing strategy.

A major issue in implementing a satisficing strategy
is the development of model evaluation functions. If
more than one model is applicable to a specific prob-
lem, the MMS needs their validity vatues to make the
selection automatically. For implementation consid-
erations, we need a quantitative measure of validity

to facilitate model selection in a mode] graph. There-
fore, a model evaluation function that determines the
validity of a mode! based on a set of predetermined
criteria is required. In general, the following three
issues should be considered in developing model eval-
uation functions.

1. What are proper criteria for determining validity
value? There are at least five possible criterda:
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EOQ{n+1)

B1

Demand(nﬂ] +
Holding costin+1) +
Ordering cosi{n+1)

< Lo

Orderi
R ) AT
Al | A2 \(Aa
Demur Damand Price
{n-15,...,n} Mn-15,..,n) {n+1)

Whara: Al: Moving average
AZ: Regression
A2 Dsmand function
Bi: EOQ mxodad

Figure 5. An alternate AND/OR graph.

1) accuracy of the model, 2) the user’s preference
for the model, 3) distance from producing the
desired information, 4) number of models inte-
grated, and 5) total cost.

2. How can several validity values be combined to get
the overal! evaluation of a composite model?

3. When should a model be evaluated?

A detailed discussion on these issues can be found
in Liang and Jones (1988). No matter whether the
satisficing or optimizing strategy is chosen, heuristics
may be used to reduce the complexity of the process.
The following is a sample heuristic for reducing com-
plexity. More discussion on search heuristics can be

. found in Pearl (1984).

Step 1. Determine the validity of each edge (a
model) in the model graph. The system determines
the validity of each selected member model by search-
ing the VALIDITY relation of the model or executing
the evaluation function if appropriate.

Step 2. Simplify the problem by removing domi-
nated alternatives. If more than one edge is connecting
two nodes, i.e., more than one model is available to
convert a set of inputs to its associated outputs, then
select the one with the highest validity and ignore the
rest,

Step 3. Calculate validities for all possible paths
from the initial state to the final state. If the validity

value represents the applicability of a particular com-
ponent model to the decision problem, then the over-
all validitv of a path may be calculated by multiplying
the validities of its member edges. There are certainly
other validity calculi. For example, if the validity value
rmeasures the computational cost for each component
model, then the overall validity of the path may be
the sum of the validities of its member edges.

Step 4. Select the path with the highest validity, If
a complete model graph is formulated, the selection
may be constrained by some other nontechnical con-
straints, such as machine memory, modeling time and
so forth. In this case, it may need an integer program
to determine which path is the best one. Because of
the screening procedures conducted in Steps 1-3, the
new formulation should be more efficient than the
original, In the case where the satisficing strategy is
adopted, the complete model graph does not exist and
the selection process is to compare the validity of a
path with a predetermined cutoff value. If the validity
is higher than the cutoff value, the path will be se-
lected. Otherwise, the modeling process continues.

QUTPUT REPORY
REQUEST UNAVAILABILITY

4

3

SEARCH
MODELBASE

FIND?

EVALUATION
OF MODEL

Figure 6. Process of the satisficing strategy.
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3. Implementation of the Framework PROLOG, a logic-based programming language, the
theoretical foundation for inference is predicate logic.
The graph-based inference mechanism is on top of
the predicate logic. _

In order to implement the alternate AND/OR tree,
TIMMS uses a recursive structure named “path.” A
technical description of the path structure is given in
Appendix 3. By implementing the path structure, the
system supports the formulation of mode! graphs and
a simple satisficing strategy that the system will pro-

.

) The graph-based framework described in the previous
section provides a basis on which capabiiities of model
integration and selection can be built in a knowledge-
based MMS. In this section, a prototype implemented
in PROLOG, called TIMMS (The Integrated Model
Management System), is presented to demonstrate the
feasibility of the framework. The system supports the
following functions.

1. Retreval of data in the data base. vide advice based on the first alternative available. If

2. Retrieval and execution of models in the model the user does not like the first piece of advice and asks

base. for more, the system wiil then provide the next alter-

3. Formulation and execution of composite models. native, if available, to the user. This process can go on

, until no alternative is available.

3.1. Architecture of TIMMS Figure 7 is a sample consultation session for inte-

The architecture of the system is quite similar to that grating the EOQ and demand forecasting models to

illustrated in Figure 1. It has two major subsystems: produce the EOQ for product “a™ for 1987. Analysis

model utilization and modeling. A graph-based infer- of a more complicated production scheduling model

ence engine drives the integration among models and composed of 18 basic models is available in Liang
between the model and the data bases. (1986).

In this example, the user specifies the desired infor-

3.2. Model Utilization Subsystem mation, the system first searches the data base and

The model utilization subsystem has three major func- finds that it is not available in the data base. Then,
tions: query processing, report generation, and help. the system searches t.he mo_del base, f_orml_llates a
TIMMS provides an interactive query language, TQL model graph as previously illustrated in Figure 5,

(The Query Language), in which a user can access and then informs the user that the integration of the
both the data base and the model base without the EOQ model and a demand forecasting model will
need to identify where the information is stored be able to generate the desired information. The user
beforehand. may accept that advice and exccute the composite

TQL is a SEQUEL-like language. The system main- model, as shown in the session, or request more
tains a data dictionary to facilitate understanding of advice. The path structure for this query is illustrated
terms used by users. In using TQL, a user first specifies in Appendix 3.

the category of the required output, such as “sales.”
Then, the system will retrieve the associated attributes
from the data dictionary (for “sales” these might be

" . 4. Concluding Remarks
“product” and “year™), prompt for their values and

process the query. For example, the query for getting One of the most important but difficult research issues

the information, “sales for toys for 1987,” 1s as follows: in developing model management systems is how to
SELECT: sales dcyelop model in‘tf:gration and selection capabilities.

] WHERE With these capabilities, a knowledge-based MMS can

K PRODUCT = toy integrate basi_c'models in the quel base to formulate
YEAR = 1987. _ ad hoc decision models. ”_I‘h}s paper pl‘ésef'l?S. a

. graph-based approach to building such capabilities.

In ac-ldJ_tlon_, TIMMS has a report generator for Development of this approach and the successful
producing formatted 1nf.ormat10n, and a help module  implementation of the prototype presented in this

to provide information if requested. article indicate the feasibility of automating the

modeling process.
To build a real-world application, however, follow-

up research needs to be conducted. For example, the
mndal atmlaatian firmrtinn hae a qio"niﬁr‘a'nf_imnact

3.3. Modeling Subsystem and the Inference
Engine

1
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*k TIMMS: QUERY PROCESSING SUBSYSTEM *k
*k ok
PO s T T T TS TR L LT e e T e

Please specify the information you need:

QUTPUT: eog

WIERE:
product = a
year = 1987

Please wait while checking the database
‘ecq for a for 1987' is not available in the database

I am checking the model base

‘demand for a for 1987' is needed but not available in the database
Could you provide it {y/n)? n

‘price for a for 1987' is needed but not available in the database
Could you provide it (y/n)? y

Please enter the value: 10

MY SUGGESTICNS

There are-three ways to produce the recnested information
The first is:

Integrating medel 'ML' and model 'M2°

Model 'M1' can generate 'eog for a for 1987

The executicn of 'M1' needs the following 3 inputs:

— holding cost of a
— ordering cost of a
— demand for a for 1987

The database has ..........s.0.... holding cost of a =35
The database has ..vseevisnsssass. Ordering cost of a = 20

'demand for a for 1987 can be produced by executing model M2
The execution of 'M2' needs the following 1 imput:
-~ price of & .
You provided s.vvesvvenriaresca... price of a = 10
Do you want to execute this model (y/m)? y
** egof a=12
More suggestioms {y/n)? n

THANK YOO

Figure 7. A sample session.

process. Therefore, further research is needed to de- Appendix 1. Proof of the Model Integration

velop various evaluation criteria and functions and to Mechanism

compare the performance of difference evaluation To be useful the mechanism must fulfill twe require-
functions. In addition, uncertainties are usually in- ments:

volved in 2 modeling process. For example, none of 1. Completeness: it must be able to build a graph that
ﬂ.l"j potential vahdity measures, such as the applica- captures all models for producing the desired in-
bility of a model and the expected modeling cost, is formation: and

IR

deterministic in nature. Research is also needed to . Termination: the process must stop after finding
study uncertainty handling in MMS. . all candidates.
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Completeness

(i) Assume a model base, MB, has one model
(M(1)={I1, P1, 01))} for producing the desired out-
put, Df, and the mechanism cannot find it. If we use
C1 to represent the integrity constraints of A(1), MB
to represent all models in the model base, DB to
represent the data in the data base and UR to represent
the data provided by the user, then the following
staternents are true:

M(1) € MB,

DFC O],

I1cDbUUR,

C1 is satisfied, and

M({1) is not in the model graph.

For examining the mechanism, statement 5 is true if
and only if one of the following conditions is true:

6. M(1) & MB, (Step 2)

7. Df ¢ O1, (Steps 2 & 4.3)

8. It ¢ DB UR, (Steps 4.2 & 4.4)
9. C11s not satisfied. {Step 5)

These conflict with our original assumptions. There-
fore, if there is one model in the model base and it
fulfills conditions 1-4, then the mechanism must be
able to add it to the model graph.

(ii} Assume a model base has m models (M(j) =
(Ij, Pj, Oj) where j = 1 ... m) for producing the
desired output, Df, and the mechanism can build a
model graph that captures all m models. However,
when one more model for producing the desired out-
put is added into the model base, the mechanism will

not be-able to find m + 1 models. There are two
thirh tha macrharmiern unll nnt he able

Knowledge-Based Model Management System [ 861

all models for producing the desired output in the
maodel base.

Termination

Assume we have a model base containing a finite
number of models and the mechanism will not stop
in the course of formulating a model graph. Since the
number of models in the model base is finite, there is

only one situation under which the assumption is true:

a model needs the output of its preceding models as
input. In this case, a cyclic graph is formulated. Since
the mechanism includes a procedure to detect cyclicity
(Step 4.1), a cyclic path will be dropped as soon as it
is detected. Therefore, we conclude that the mecha-
nism is a finite process.

Appendix 2. Proof of Proposition 1

The algorithm employs two kinds of operations: one
is picking up an input, the other is finding possible
models that produce the input. If the former operation
is performed on a node, then the node becomes true
only if the operation has been successfully applied to
all inputs (i.e., this node is an AND node). If the latter
operation is performed, then the node becomes true
if any model in the model base is available (i.e., this
node is an OR node). Since these two kinds of opera-
tions are applied alternately in the propagation process
of the model graph, the formulated graph must be an
alternate AND/OR tree.

Appendix 3. Path Structure

“Path” is a list composed of three elements: the desired

1
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Table I
Path Structure

[path{cog(a. 1987, X},
[path(/r_cost(a, 5). [database], ]},
path{e_cost(a, 20), [database], []),
path{demand{a, 1987, Y), :
[path{demand(a, 1986, 158), [database], [1),
path(demand(a, 1985, 145), [database], []),
path{demand{a, 1984, 132), [database]}, []}].
M4)],
M1), /* First Path */
path(eocq(a, 1987, X},
[path{4_cost{a, 5), [database], {]),
path(o_cost(a, 20), [datzbase], []),
path(demand{demand(z, 1987, ¥),
[path{demand(a, 1986, 158}, [database], []),
path(demand(a, 1985, 145}, [database], [),
path(demand(a, 1984, 132}, [database], []),
path(demand(a, 1983, 123), [database], [T}],
M3,
M1),  /* Second Path*/
path{eoq(a, 1985, X),
[path(k_cost(a, 5), [database], []),
path{o_cost(a, 20), {database], []),
path(demand(a, 1987, ¥),
[path(price{a, 10), [user], [},
M2)).
M1)].  /* Third Path */

that the price is retrieved from the data base; whereas
the “[]” (nothing in the square bracket) means that no
model execution is required since no model is

included in the input path. The path structure illus-

trated in Table I represents the model graph shown
previously in Figure 3.

This structure includes three paths that produce
EQQ for product 4™ for 1987: integrating models M4
and M1, integrating models M3 and M1, and inte-
grating models M2 and M1. In the path structure,
“[user]” means that the information is provided by
the user.
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