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Abstract--The process of extracting, structuring and organizing elicited knowledge (called knowledge 
acquisition) is a bottleneck in developing knowledge-based systems. A manual approach that elicits 
domain knowledge by interviewing human experts typically has problems, because the experts are often 
unable to articulate their reasoning rules. An automatic approach that induces knowledge from a set of 
training cases also suffers from the unavailability of sufficient training cases. We present an integrated 
approach that combines the strengths of both methods to compensate for their weaknesses. In this 
approach, human experts are responsible for solving problems, whereas an inductive learning algorithm 
is responsible for reasoning and consistency checking. Copyright © 1996 Elsevier Science Ltd 

1. INTRODUCTION 

KNOWLEDGE ACQUISITION is a process of extracting, 
structuring and organizing elicited knowledge from 
domain experts or other knowledge sources and convert- 
ing the knowledge into rules or other forms of 
representation accessible with a computer program 
[16,25]. As the power of an expert system comes from 
the knowledge that it possesses [13], the acquisition of 
knowledge is a major stage in the development of an 
experts system. 

The transfer of expertise from various sources to a 
knowledge base is difficult and challenging. A manual 
process that encodes domain knowledge by interviewing 
human experts suffers from several difficulties [31,40]. 
For example, human experts are typically not also expert 
in articulating their rules of reasoning because they are 
not explicitly aware of the structure of their knowledge. 
A paradox of expertise [20] claims that the better one is 
an expert, the worst one is to tell the details. Knowledge 
acquired during interview may be unreliable, as verbal 
reports and mental behavior are not necessarily corre- 
lated [2]. Incongruities may occur among what an expert 
says that he does, what he actually does and what he 
should have done [17]. 

Communication between the knowledge engineer and 
the domain expert is another difficult problem. The 
knowledge engineer may know little about the problem 
domain, and may not understand clearly the jargon used 
by the domain expert. On the other hand, the domain 
expert may not understand the process of knowledge 
acquisition and what the knowledge engineer needs. 
Even the cultural differences between the two parties of 
knowledge acquisition may undermine the development 

of a knowledge-based system. 
When historical examples are available, an automatic 

process can be used to induce rules from fragments of 
knowledge [35,36]. The unique power of this approach is 
the "automatic" learning capability of its inductive 
algorithm. Many successful applications are reported, 
such as disease diagnoses [42,23,29], business applica- 
tions [5,8,39,22] and others [5,10,26]. 

A major constraint of automatic learning is that it 
requires many training cases from which to induce 
knowledge. The quality of the training result depends on 
the quality of the data. Another drawback is that 
induction may generate knowledge that uses paths of 
reasoning different from those used by the expert. This 
may make human experts reluctant to accept the induced 
knowledge base regardless of its performance. 

Given that each approach alone has limitations and 
their respective strengths and weaknesses seem com- 
plementary, we seek to integrate the two approaches to 
gather the advantages and to avoid the deficiencies. The 
idea is that the weaknesses of one approach be 
compensated by the strengths of the other. For example, 
the task of articulating a reasoning process for a human 
expert can be left to an inductive method to solve, or the 
restriction of inductive learning on training examples can 
be given to an experienced human expert to provide help. 
This approach is useful as human experts are good at 
solving problems whereas inductive learning algorithms 
are good at extracting rules of reasoning. 

Previous research that aimed at a similar goal exists. 
For example, Parsaye [31] proposed an approach that 
combines interactive knowledge acquisition with rule 
induction. Based on the theory of repertory grids [3,21], 
the system can interactively interview an expert by 

393 



394 Bingchiang Jeng et aL 

asking questions to capture the expert's knowledge. The 
captured knowledge is then generalized using rule 
induction. Buntine and Stirring [7] presented another 
approach that allows a human expert to interact with a set 
of automatically induced rules so that each other's 
knowledge is cross-checked. Recently Evans and Fisher 
[12] reported a similar approach that is successfully 
applied to a problem domain where the experts have only 
weak causal knowledge. 

A limitation of Buntine and Stirling's approach is that 
it still depends on a set of pre-existing training examples. 
In some cases, these examples are hard to come by. 
Furthermore, the way an expert interacts with the 
preliminary rules is informal. 

The approach presented in this paper extends their 
ideas to allow interactive knowledge acquisition from 
(nearly) scratch. A modified algorithm for inductive 
learning is designed so that an expert communicates with 
the system in an interrogative style during the inductive 
process. In addition to inducing a decision tree from 
existing training cases, the system also identifies near- 
miss cases falling on the classification borders for 
clarification and verification by human experts. These 
cases, after classification, become new training cases for 
accurate learning by the modified inductive algorithm. 
This way, the expert's knowledge is accumulated incre- 
mentally and the learning process can be repeated until 
the induced knowledge is satisfied by the human expert. 

The remainder of the paper is organized as follows. 
The process of automatic knowledge acquisition and its 
related techniques is reviewed in Section 2. An inter- 
active process for inductive learning that shows how to 
elicit knowledge from a domain expert is described in 
Section 3. Experimental results from the evaluation of 
the performance of the proposed approach is presented in 
Section 4. Section 5 summarizes the research. 

2. AUTOMATING KNOWLEDGE ACQUISITION 

There are many different methods for knowledge 
acquisition, which can be classified as: manual, semi- 
automatic and automatic [11,25]. Eliciting knowledge by 
manual methods is highly labor-intensive. Methods 
belonging to this category include structured/unstruc- 
tured interviews, analysis of protocol, observations and 
so forth [40]. 

Semi-automatic methods are primarily designed to 
support either the expert or the knowledge engineer to 
perform the necessary task more effectively. Tools to 
elicit domain knowledge include ETS, KRITON, AQUI- 
NAS, MORE, MOLE etc. [4,24]. Others include 
TEIRESIAS [17] that assists the knowledge engineer to 
update a knowledge base, and KADS [14] that provides 
a collection of tools to support a knowledge engineer to 
extract, to structure, to analyze and to document expert 
knowledge. 

Although semi-automatic methods expedite the work 

of knowledge engineers and/or domain experts, they still 
share problems of manual methods: the acquired knowl- 
edge is difficult to validate; correlation between verbal 
reports and mental behavior may be weak. In addition, 
Michie [28] stated that knowledge of certain types could 
not be elicited using manual methods, simply because 
the domain was so large and complicated that the expert 
would be unable to explain how it operates. 

Automatic methods that use machine-learning tech- 
niques to extract knowledge require less or no 
participation by either knowledge engineers or domain 
experts. Therefore, they do not have the difficulties 
associated with human experts. Currently, the most 
popular automated method is rule induction. 

Induction is a process of general inference from 
particular instances. Rule induction (or inductive learn- 
ing) refers to a concept learning process by which a set 
of rules is created from training cases to explain or to 
predict a problem-solving behavior. When the induced 
structure of knowledge is represented in the form of a 
decision tree, it is also called (decision) tree induction 
[27,35]. A decision tree is considered as a set of rules in 
a compact form; it can be transformed into rules easily. 

Early work on rule induction is traced to 1966 when 
Hunt, Martin and Stone developed a method for 
induction. The method was later implemented and 
expanded by Paterson and Niblett [32] to create ACLS 
(A Concept-Learning System) and by Quinlan [34,35] to 
develop the popular ID3. In the following, we shall use 
the ID3 algorithm to illustrate how rule induction 
works. 

Input to ID3 is a collection of training cases. Each is 
described by a set of attributes associated with a class 
name (or outcome). An attribute can be either categorical 
(e.g. color) or numerical (e.g. age). A numerical attribute 
can adopt discrete or continuous values. The basic 
procedure of ID3 applies a divide-and-conquer approach 
to partition recursively the data set, based on a test on 
selected attribute values, into mutually exclusive subsets. 
The procedure continues until each subset contains cases 
of the same class (to avoid over-fitting the training data, 
termination conditions may be defined) or no attribute is 
available for further decomposition. If S= {(ai~ . . . . .  ain; 
ci)laij~A j, ci~C)} is a set of training cases, where Aj 
denotes the domain of attribute j and C for the class, the 
algorithm is shown in Fig. 1. 

An example shown in Fig. 2 is the decision tree 
created by ID3 from financial data to analyze the risk of 
bankruptcy. A new case is classified by examining which 
leaf it reaches when traveling down through the tree. The 
traversed path is determined by a sequence of tests to the 
new case (i.e. a branch is selected depending on the 
outcome of a test that the new case generates). When it 
reaches a leaf in this way, it is considered similar to other 
existing cases contained in the leaf as they have all 
passed the same tests. Hence, the outcome of the new 
case is the same as its neighbors and is assigned with the 
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Procedure Induct ion  (S: TrainSet, T: Tree) 
Begin 

If S contains cases of the same class 
Then label T with the class name and exit 
Else Begin 

For each numerical attribute A i, Do 
Find a value v/to decompose the 
training set into two subsets, 
Calculate the entropy of the decomposition, 
Choose the decomposition whose 
entropy value is the smallest; 

For each categorical attribute, 
Decompose S by its classes 
and Calculate its entropy; 

Partition S into two or more mutually exclusive 
subsets: S i, i = 1,..., k, based on the 
attribute A s whose entropy value is the 
smallest after decomposition. 

Create a node T i for each subset S i, and 
link it to the parent node as its child. 

For i = 1 to k, call Induct ion (S i, T i) 
End 

End, 

FIGURE 1. The ID3 algorithm. 

class name labeled at the leaf. For example the prediction 
of  bankruptcy for case (0, 0, 0, 0.02, 0.05, 0.6, 0.04) is 
YES, as it follows the path at the far left down to a leaf 
labeled "YES". 

3. I N T E R A C T I V E  I N D U C T I O N  

The fundamental basis for methods of  decision tree 
induction (or rule induction) is that two cases with 
similar features are classified into the same class. The 
success of  such an approach relies on sufficient training 
cases to cover every aspect of  the problem domain 
without inconsistency. Otherwise, the induced know- 
ledge may be unreliable. 

In practical applications, however, this assumption is 
commonly violated. The sources of  training cases are, in 

general, from a domain expert or from historical data in 
a maintained database. Difficulties arise typically 
because the domain expert can provide only a few 
selected examples, whereas historical data, if they exist, 
may be obsolete or contain errors and missing values. 

A further difficulty with inductive learning is in its 
explanation capability. Explaining the reasoning process 
by which a conclusion is reached is a key requirement for 
an expert system. Rules induced from the training set 
may, however, differ from those used by the expert. This 
makes its explanation sometimes less acceptable to 
human beings because the underlying process of  reason- 
ing used by the expert system may be incomprehensible 
to users. 

It is thus useful to have interactions between human 
experts and inductive learning algorithms. This allows 
human experts to provide useful knowledge, such as 
hand-crafted tutorial examples, rules of  thumb, general 
hints and problem-solving strategies, to help an inductive 
algorithm. 

The inductive algorithm presented below is an 
example that supports interaction with experts during its 
learning process. After a knowledge structure is induced 
from its training cases, the algorithm identifies cases that 
cannot be correctly classified. These cases are brought to 
the expert in the form of  questions to be solved. Once 
they are solved, they become new training cases to the 
inductive algorithm for further learning. In this way, 
expert knowledge is incrementally elicited and incorpor- 
ated into the induced knowledge structure. A typical 
scenario of  the interactive inductive process is as 
follows. 

Initially, the knowledge engineer collects knowledge 
from all possible sources. Different forms of  knowledge 
are stored differently. Rules (mostly from domain 
experts) are stored in the rule set and tutorial cases 
(mostly from the historical database) are stored in the 
training set. Then, the algorithm tests any inconsistencies 

Leaf  1 < ' ~  
Leaf4 

Leaf2 Leaf3 

Leaf  5 Leaf  6 

Bankruptcy : Y e s ,  No 
C I  : Consistency Opinion 
C2 : Subject to Opinion 
C3 : Going Concern 
QI : Net Income/Total Assets 
Q2 : Current Assets/Total Assets 
( ~ :  Current Ratio 

: Cash/Total Assets 

FIGURE 2. An example of a decision tree for bankruptcy prediction. 
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FIGURE 3. Space partition by a decision tree. 

in the knowledge structure represented by these two sets. 
As both sets are incomplete at the beginning, contra- 
dictory cases (i.e. cases classified differently by those 
two knowledge sources) are identified. These cases are 
then presented to the domain expert for further review. 

Prompting experts to review contradictory cases has 
two purposes. First, certain knowledge ignored by the 
expert may be use to provoke him to describe the 
inference rules in more detail. Then the contradictory 
cases, after correction, become new examples to the 
inductive algorithm for further learning. Revision of the 
two sets triggers the cross-validation process again and 
the above procedure is repeated. A sketch of this 
approach is shown in Fig. 5. 

An important feature of the above algorithm is its 
ability to detect inconsistencies during the process of 
interactive induction. This is important when two 
different sources of knowledge are merged because 

Sa 

X 

inconsistencies may exist. In the following we shall 
present an algorithm for detecting inconsistencies. 
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3.1. Strategy for Border Validation 

A decision tree created from training cases can be 
represented as a partitioned feature space. The induction 
of decision trees (or rules) in some sense is a process to 
maximize the internal similarity within the partitioned 
subspaces. Each leaf of the tree corresponds to a 
subspace, and each case in the problem domain corre- 
sponds to a point in it. For example, a decision tree 
shown in Fig. 3 partitions a two-dimensional feature 
space with attribute (X, Y) into three subspaces. Sub- 
spaces S, and St represent class A and subspace Sb 
represents class B. A new case is evaluated based on the 
subspace into which it falls (e.g. a case with X<Xc is 
classified into class A). 

Similarly, rules acquired from human experts can also 
be illustrated as partitions of the feature space. The 
problem of verifying whether two knowledge sources 
(i.e. rules and the training set) have inconsistencies is 
thus equivalent to verifying whether their partitions are 
identical, which can be tested by simply determining if 
there are cases that fall into different subspaces in these 
two partitions. This is explained in detail in the 
following. 

A border is defined as a boundary that separates two 
subspaces. A border is redundant if both subspaces 
adjacent to the border represent the same class (e.g. the 
one between subspace S, and Sc in Fig. 3). Incon- 
sistencies occur when more than one non-redundant 
border can be found to partition a space into subspaces. 
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TABLE 1 
A Table of Path Conditions for the Bankrupt Decision Tree 

Path F2 F3 F4 F5 Class 

1 - - o 0 / . 0 2 9 5  - - o o / . 0 4 3 5  Yes 
2 = 0  - o 0 / - . 0 0 9 3  - . 0 4 3 5 / o 0  N o  

3 = 1 - o 0 / -  . 0 0 9 3  - . 0 4 3 5 / o 0  Yes 
4 - - . 0 0 9 3 / . 0 2 9 5  - . 0 4 3 5 / o 0  Yes 
5 - . 0 2 9 5 / o 0  - o 0 / . 7 4 8 7  - N o  

6 - . 0 2 9 5 / o 0  . 7 4 8 7 / o 0  - Yes 

[, Local Refinement 
L 

RGURE 5. The process for interactive Induction. 

k 

Such a situation is called a border shift, since at least one 
of them is incorrect. Inconsistency exists if and only if a 
border shift exists. Figure 4(a) shows two examples of  
border shifts. 

A strategy for detecting border shifts, that requires 
only two points (ON and OFF), can be found in [18]. The 
ON point lies exactly on a given border to be verified, 
while the OFF point lies slightly off in the open side of 
the border. A border shift exists if the actual location of 
the border fails outside the OFF point or inside the ON 
point. In other words, no border shift exists if it passes 
exactly between the two points. 

For example, if border Y lies in a different location 
(the broken line) in the left diagram of Fig. 4(b), the OFF 
point would have been classified differently. Similarly, 
the ON point would be classified differently in the right 
diagram of Fig. 4(b), if  the solid-line border is shifted to 
the broken-line one. With carefully chosen testing points, 
the strategy can detect a border shift effectively, if it 
exists. 

3.2. Algorithm for Test-Case Generation 

The following is an algorithm for finding non-redundant 
borders and verifying their correctiveness in a partitioned 
feature space. We use the decision tree shown in Fig. 2 as 
an example to illustrate it. 

The first step of the algorithm is to create a table of  
path conditions according to the decision tree. Each path 
from the root to a leaf of the decision tree corresponds to 
a row in the table. Attributes to partition the training 
cases correspond to columns. Each field in a row records 
an attribute condition defined by the path. The last 
column denotes the outcomes. Table 1 shows the path 
conditions of  the decision tree in Fig. 2. Each cell in the 
table gives the upper and lower bounds of an attribute. 

The purpose of the path condition table is to 
determine the adjacency relationship between two sub- 
spaces. In the following, we show how to identify a 
non-redundant border from the table. As non-redundant 

borders require their adjacent subspaces to represent 
different classes, adjacency relationships are determined 
only between paths that represent distinct outcomes. In 
our example, paths 1, 3, 4 and 6 belong to one group and 
paths 2 and 5 belong to another. A non-redundant border 
is identified when a path from one group is adjacent to a 
path from the other. 

The adjacency relationship of two paths is calculated 
by assessing whether the intersection of their path 
conditions recorded in the table is non-empty. This step 
amounts to assessing whether corresponding attribute 
conditions of  the two paths overlap. The results of  the 
intersection define the border. For example, we can 
determine whether paths 1 and 2 have an intersection by 
examining whether their attributes overlap. The data in 
Table 1 indicate that their intersections are F2=0, 
F3 ~< -0.0093,  F4="don ' t  care" and F5 =0.0435. As the 
intersection is non-empty, paths 1 and 2 are considered 
adjacent to each other. Other non-redundant borders are 
calculated similarly. 

Given a non-redundant border, one can select an ON 
point and an OFF point to verify its correctness. For 
instance, cases to test the previously generated border 
might be F2=0, F3=-0 .0093 ,  F4="don ' t  care", 
F5=0.0435 with class=YES (ON point) and F2=0, 
F3=-0 .0093 ,  F4="don ' t  care", F5=0.0436 with 
class = NO (OFF point). 

In our strategy, whether the ON point is located 
exactly on the border is relative unimportant, as long as 
the OFF point is chosen to be close to it. The test cases 
are then compared with the outcomes predicted by 
inferences from the rule set. If  knowledge of the human 
expert is incompletely included in the rule set or the 
training data are imperfect, contradictions would occur. 
These test cases are then presented to the human expert 
for review. Otherwise the process proceeds to identify 
the next non-redundant border and to generate other test 
cases. At the beginning of the interactive induction 
process, a relatively large number of contradictory cases 
may be identified. After certain revisions, contradictory 
cases reduce. 

3.3. The Process of Interactive Induction 

To summarize, the process of interactive induction as 
shown in Fig. 5 consists of six phases: rule description, 
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case induction, contradiction identification, revision and 
augmentation, local refinement and result validation. 
Iterations occur in the first four phases until a termination 
criterion is satisfied. Then it passes through the phases of 
local refinement (optional) and result validation. This 
process differs from the traditional inductive learning 
that only performs case induction and result validation. 
No interaction between the expert and the induced 
knowledge is allowed. 

The phase of rule description is a major step where an 
expert can provide judgments and transform into rules. 
Any manual techniques for eliciting knowledge 
described before can be applied here. The set of rules is 
not required to be complete as it will be refined in later 
iterations. It is not very difficult to create such a rule set 
as an expert can generally provide rules of thumb easily. 
The more complete the rule set which describes the 
expertise, the fewer iterations it needs to perform later. If  
the rule set is not available, the step of identifying 
contradictory cases will check with a domain expert 
directly. 

Although ID3 is the example that we used in this 
research, the induction phase can use any inductive 
learning algorithm. The only concern is how the 
algorithm handles new training cases. It would be 
inefficient if the algorithm flushes its old memory and 
redoes the learning process from the beginning every 
time a modification is involved. Utgoff has described an 
incrementally inductive algorithm ID5R [41] which 
processes new training cases by updating the existing 
decision tree, instead of creating a new one. Thus the 
incremental learning cost of the algorithm is relatively 
low. The training cases for induction can be historical 
data (if they exist), or hand-crafted tutorial examples 
given by the expert. 

The phase of contradiction identification detects 
inconsistency between rules and training cases. It uses 
the validation strategy described in Section 3.1. Contra- 
dictory cases are passed over to the revision and 
augmentation phase in which human experts re-inspect 
the underlying process of reasoning and revise the rule or 
the case descriptions. Cases after correction are included 
in the training set that initiates another iteration of the 
induction process. 

In addition to simply resolving conflicts, defining a 
sufficient feature set for an application domain is a 
challenging problem for machine learning. The ID3 
algorithm, for example, would perform poorly, if the 
attributes of a set of training cases are not sufficient to 
describe a domain. This problem however, is mitigated in 
our approach as human experts may add features to solve 
contradictions that cannot be solved by rule revision. 
This way, the features in the feature set can grow. 

The local refinement phase is optional. It is primarily 
designed to fine-tuning the overall predictive accuracy of 
inductive learning. For a problem domain to be modeled, 
the predictive accuracy cannot be improved infinitely. A 

limit is often reached after several iterations. This is 
primarily due to the orthogonal partition of feature space 
in ID3, which may not match the real situation exactly. In 
this case, predictive accuracy cannot be improved by 
further training. Local refinement that performs learning 
independently on selected subspaces can then come into 
play. 

Finally, the induced knowledge needs to be validated. 
A set of criteria for evaluating the quality of the 
inductive result and determining when to terminate the 
inductive process are critical. Other tools that facilitate 
the validation and maintenance of the knowledge base 
can also be useful in this stage. 

4. PERFORMANCE EVALUATION 

To evaluate this process, a prototype system implement- 
ing the method has been developed. The kernel of the 
system consists of three modules: one for inductive 
learning based on ID5R (an incremental version of ID3) 
[41], one for rule inference based on CLIPS and another 
to select test cases. The user interface integrates these 
modules. 

To evaluate whether the interactive induction 
approach is practically useful, we conducted experiments 
on four hypothetical and one real problem. The hypothet- 
ical problems are to learn a concept that defines a 
geometric pattern, such as a circle, a polygon and so on. 
The real world problem is to learn the rules that an expert 
uses at a blackjack game to decide whether to call for 
another card. 

4.1. Learning Geometric Patterns 

In this experiment, the system needs to learn a geometric 
pattern. First, a circle was used for experiment. A point 
falling inside a circle was assigned class 1 and others 
were assigned class O, as shown in Fig. 6(a). Initially, 
nine training cases were selected randomly from the 
diagram. The rule provided by the expert was 

Rule 1:IfX~<3 a n d X ~ > - 3  and Y~<3 and Y~>- 3 Then 
Class = 1 

Else Class=0; 

The concept learned after the first iteration of the 
induction is given in Fig. 6(b), from which the contra- 
dictory cases identified are shown in Fig. 6(c). The final 
concept induced after three iterations of the learning 
process is given in Fig. 6(d). One can see that the result 
approaches the actual circle pattern. In addition to the 
nine given training cases, the system generates a total of 
20 questions for the human expert to answer in the 
learning process. 

Figure 7 shows how other geometric patterns can be 
learned in experiments. They all achieve satisfactory 
results. The learned patterns are near the actual patterns. 
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FIGURE 6. A learning process for the circle experiment. 

The only limitation is that the nature of the orthogonal 
partition with ID3 does not allow a real curvilinear 
draw. 

4.2. Learning Blackjack Games 

Another experiment shows how a system can learn the 
rules that a human expert uses in playing blackjack. The 
game is played between a dealer and players. Each player 
receives two reversed cards, while the dealer receives 
one reversed and one obverse cards. An ace can count as 
either 1 point or 11 points. During the game, a player 
may request for more cards (to "hit") or to stay with the 
current hand (to "stand"). A player wins if the total points 
of cards in hand is below 21 points but greater than the 
dealer's. 

A human expert decides whether to hit or to stand 
based on his current count in hand, with or without an 
ace, and the dealer's obverse card. These three attributes 
determine a decision. The expert's rules can be drawn in 

a decision diagram as shown in Fig. 8(a). Initially five 
randomly chosen cases were given for training. The rules 
learned after three iterations are shown in Fig. 8(b), 
which are pretty close to the actual rules used by the 
expert. 

5. RELATED WORK 

The subject discussed in this article can also be seen as 
a problem of concept learning in the machine learning 
field. In particular, the way a domain expert interacts 
with a learning system, can be formulated as a model of 
learning with membership queries [1], in which an 
instructor or oracle exists to answer any queries placed 
by a learner. In this model, the learner has control over 
what part of  information it receives from a problem 
domain next. 

Although our work starts initially from a different 
perspective, its result happens to be in accordance with 
most recent work in machine learning. Cohn et al. [9] 
presented an approach to learn a concept by generating 
queries from a region of uncertainty, an area in the 
domain where misclassification is still possible. An 
interesting coincidence in their neural network's imple- 
mentation is that it uses two networks S and G to identify 
an uncertain case, when outcomes of the case are 
inconsistent between them. They demonstrated in several 
domains that the approach gives better learning results 
for a fixed number of training cases than simply learning 
from examples alone. This is encouraging since the 
rationale of identifying regions of uncertainty is similar 
to our identification of contradictory cases. 

Another learning model similar to the above is the on- 
line (or incremental) learning model in which the learner 
answers a sequence of yes/no questions with immediate 
feedback provided after each question. A variant of the 
on-line learning model, called self-directed learning, has 
been recently proposed by Goldman and Sloan [15] 
which allows the learner to select the presentation order 
for the instance. Thus it can be seen as a variation of 
learning with membership queries in which the learner is 
only "charged" for queries whose outcomes are unpre- 
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FIGURE 7. Learning other geometric patterns. 
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P l a y e r ' s  

Current 
Count 

Player's 
Current 
Count 

21 
20 
19 
18 
17 
I6 
15 
14 
13 
12 
11 
10 

D e a l e r ' s  o b v e r s e  card 

3 4  5 6 7 g 9 1 0 A  

- - S t a n d  . . . .  

- - -Hit . . . .  

21 
20 
19 
15 
17 
16 
15 
14 
13 
12 
11 
10 

2 3 4 5 6 7 8 9 1 0 A  

- - -  S t a n d _ - -  

With Ace Without Ace 

(a )  Exper t s '  rules to play b lackjack  

Dealer's obverse card 

3 4 5 6 7 8 9 1 0 A  3 4 5  6 7 g 9 1 0 A  
21 21 

2o - - S t a n d - - - ~  2o _ _ _  Stand 
19 19 
18 18 
17 17 
16 16 
15 15 

14 -Hi t -  - - H i t -  - 14 
13 13 
12 12 
11 11 
1o lo Hit 

W i t h  A c e  W i t h o u t  A c e  

( b )  R u l e s  l e a r n e d  a c c o r d i n g  t o  t h e  i n d u c t i v e  a l g o r i t h m  

FIGURE 8. Learning the blackjack playing rules. 

• S t a n d . .  _ H i t _  

dictable. Theoretical results given by Goldman and Sloan 
show that the performance of self-directed learning is the 
best among all other commonly studied on-line and 
query learning models. 

Our process of learning by detecting contradictory 
cases near the classification border is also in accordance 
with the main results discovered from an autonomous 
exploratory learning system (i.e. without an external 
teacher). Winston [43] first drew attention to the critical 
role of near-miss training examples. Recently the Protos 
system, developed by Porter et al. [33], also used near- 
miss cases to learn an examplar difference before 
matching a new case to an existing examplar. 

6. DISCUSSION AND CONCLUSIONS 

In this article, we have presented an algorithm for 
interactive induction and evaluated the performance of 
the implemented system in learning goemetric patterns 
and blackjack game strategies. The algorithm is simple 
but efficient. 

The contribution of this work is two-fold. First, it 
suggests an effective way of integrating manual knowl- 
edge acquisition and inductive learning to achieve a 
more accurate knowledge base. Second, it provides a 
new way of creating near-miss training examples and 
learning from these examples. This allows critical 
knowledge to be learned without a large number of 
training cases. 

Further research following this includes replacing ID3 
with other learning methods, testing in other domains 
and exploring the handling of certainty factors in 
interactive induction. The current approach can also be 

extended to acquire knowledge from multiple experts. 
The main difficulty for knowledge acquisition from 
multiple experts is how to combine their expertise and 
find out any inconsistencies systematically. Due to 
different subjective opinions, two competitive domain 
experts may disagree with each other occasionally. Our 
approach should be helpful in identifying conflicting 
rules or cases during the knowledge acquisition process. 
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