
Pergamon
Expert Systems With Applications, Vol. 10, No. 3/4, pp. 393--401, 1996

Copyright © 1996 Elsevier Science Lid
Printed in Great Britain. All rights reserved

0957-4174/96 $15.00+0.00

S0957-4174(96)00018-8

Interactive Induction of Expert Knowledge

BINGCHIANG JENG, TING-PENG LIANG AND MINYANG HONG

Department of Information Management, National Sun Yat-Sen University, Kaohsiung, Taiwan 80424, Republic of China

Abstract--The process of extracting, structuring and organizing elicited knowledge (called knowledge
acquisition) is a bottleneck in developing knowledge-based systems. A manual approach that elicits
domain knowledge by interviewing human experts typically has problems, because the experts are often
unable to articulate their reasoning rules. An automatic approach that induces knowledge from a set of
training cases also suffers from the unavailability of sufficient training cases. We present an integrated
approach that combines the strengths of both methods to compensate for their weaknesses. In this
approach, human experts are responsible for solving problems, whereas an inductive learning algorithm
is responsible for reasoning and consistency checking. Copyright © 1996 Elsevier Science Ltd

1. INTRODUCTION

KNOWLEDGE ACQUISITION is a process of extracting,
structuring and organizing elicited knowledge from
domain experts or other knowledge sources and convert-
ing the knowledge into rules or other forms of
representation accessible with a computer program
[16,25]. As the power of an expert system comes from
the knowledge that it possesses [13], the acquisition of
knowledge is a major stage in the development of an
experts system.

The transfer of expertise from various sources to a
knowledge base is difficult and challenging. A manual
process that encodes domain knowledge by interviewing
human experts suffers from several difficulties [31,40].
For example, human experts are typically not also expert
in articulating their rules of reasoning because they are
not explicitly aware of the structure of their knowledge.
A paradox of expertise [20] claims that the better one is
an expert, the worst one is to tell the details. Knowledge
acquired during interview may be unreliable, as verbal
reports and mental behavior are not necessarily corre-
lated [2]. Incongruities may occur among what an expert
says that he does, what he actually does and what he
should have done [17].

Communication between the knowledge engineer and
the domain expert is another difficult problem. The
knowledge engineer may know little about the problem
domain, and may not understand clearly the jargon used
by the domain expert. On the other hand, the domain
expert may not understand the process of knowledge
acquisition and what the knowledge engineer needs.
Even the cultural differences between the two parties of
knowledge acquisition may undermine the development

of a knowledge-based system.
When historical examples are available, an automatic

process can be used to induce rules from fragments of
knowledge [35,36]. The unique power of this approach is
the "automatic" learning capability of its inductive
algorithm. Many successful applications are reported,
such as disease diagnoses [42,23,29], business applica-
tions [5,8,39,22] and others [5,10,26].

A major constraint of automatic learning is that it
requires many training cases from which to induce
knowledge. The quality of the training result depends on
the quality of the data. Another drawback is that
induction may generate knowledge that uses paths of
reasoning different from those used by the expert. This
may make human experts reluctant to accept the induced
knowledge base regardless of its performance.

Given that each approach alone has limitations and
their respective strengths and weaknesses seem com-
plementary, we seek to integrate the two approaches to
gather the advantages and to avoid the deficiencies. The
idea is that the weaknesses of one approach be
compensated by the strengths of the other. For example,
the task of articulating a reasoning process for a human
expert can be left to an inductive method to solve, or the
restriction of inductive learning on training examples can
be given to an experienced human expert to provide help.
This approach is useful as human experts are good at
solving problems whereas inductive learning algorithms
are good at extracting rules of reasoning.

Previous research that aimed at a similar goal exists.
For example, Parsaye [31] proposed an approach that
combines interactive knowledge acquisition with rule
induction. Based on the theory of repertory grids [3,21],
the system can interactively interview an expert by

393

394 Bingchiang Jeng et aL

asking questions to capture the expert's knowledge. The
captured knowledge is then generalized using rule
induction. Buntine and Stirring [7] presented another
approach that allows a human expert to interact with a set
of automatically induced rules so that each other's
knowledge is cross-checked. Recently Evans and Fisher
[12] reported a similar approach that is successfully
applied to a problem domain where the experts have only
weak causal knowledge.

A limitation of Buntine and Stirling's approach is that
it still depends on a set of pre-existing training examples.
In some cases, these examples are hard to come by.
Furthermore, the way an expert interacts with the
preliminary rules is informal.

The approach presented in this paper extends their
ideas to allow interactive knowledge acquisition from
(nearly) scratch. A modified algorithm for inductive
learning is designed so that an expert communicates with
the system in an interrogative style during the inductive
process. In addition to inducing a decision tree from
existing training cases, the system also identifies near-
miss cases falling on the classification borders for
clarification and verification by human experts. These
cases, after classification, become new training cases for
accurate learning by the modified inductive algorithm.
This way, the expert's knowledge is accumulated incre-
mentally and the learning process can be repeated until
the induced knowledge is satisfied by the human expert.

The remainder of the paper is organized as follows.
The process of automatic knowledge acquisition and its
related techniques is reviewed in Section 2. An inter-
active process for inductive learning that shows how to
elicit knowledge from a domain expert is described in
Section 3. Experimental results from the evaluation of
the performance of the proposed approach is presented in
Section 4. Section 5 summarizes the research.

2. AUTOMATING KNOWLEDGE ACQUISITION

There are many different methods for knowledge
acquisition, which can be classified as: manual, semi-
automatic and automatic [11,25]. Eliciting knowledge by
manual methods is highly labor-intensive. Methods
belonging to this category include structured/unstruc-
tured interviews, analysis of protocol, observations and
so forth [40].

Semi-automatic methods are primarily designed to
support either the expert or the knowledge engineer to
perform the necessary task more effectively. Tools to
elicit domain knowledge include ETS, KRITON, AQUI-
NAS, MORE, MOLE etc. [4,24]. Others include
TEIRESIAS [17] that assists the knowledge engineer to
update a knowledge base, and KADS [14] that provides
a collection of tools to support a knowledge engineer to
extract, to structure, to analyze and to document expert
knowledge.

Although semi-automatic methods expedite the work

of knowledge engineers and/or domain experts, they still
share problems of manual methods: the acquired knowl-
edge is difficult to validate; correlation between verbal
reports and mental behavior may be weak. In addition,
Michie [28] stated that knowledge of certain types could
not be elicited using manual methods, simply because
the domain was so large and complicated that the expert
would be unable to explain how it operates.

Automatic methods that use machine-learning tech-
niques to extract knowledge require less or no
participation by either knowledge engineers or domain
experts. Therefore, they do not have the difficulties
associated with human experts. Currently, the most
popular automated method is rule induction.

Induction is a process of general inference from
particular instances. Rule induction (or inductive learn-
ing) refers to a concept learning process by which a set
of rules is created from training cases to explain or to
predict a problem-solving behavior. When the induced
structure of knowledge is represented in the form of a
decision tree, it is also called (decision) tree induction
[27,35]. A decision tree is considered as a set of rules in
a compact form; it can be transformed into rules easily.

Early work on rule induction is traced to 1966 when
Hunt, Martin and Stone developed a method for
induction. The method was later implemented and
expanded by Paterson and Niblett [32] to create ACLS
(A Concept-Learning System) and by Quinlan [34,35] to
develop the popular ID3. In the following, we shall use
the ID3 algorithm to illustrate how rule induction
works.

Input to ID3 is a collection of training cases. Each is
described by a set of attributes associated with a class
name (or outcome). An attribute can be either categorical
(e.g. color) or numerical (e.g. age). A numerical attribute
can adopt discrete or continuous values. The basic
procedure of ID3 applies a divide-and-conquer approach
to partition recursively the data set, based on a test on
selected attribute values, into mutually exclusive subsets.
The procedure continues until each subset contains cases
of the same class (to avoid over-fitting the training data,
termination conditions may be defined) or no attribute is
available for further decomposition. If S= {(ai~ ain;
ci)laij~A j, ci~C)} is a set of training cases, where Aj
denotes the domain of attribute j and C for the class, the
algorithm is shown in Fig. 1.

An example shown in Fig. 2 is the decision tree
created by ID3 from financial data to analyze the risk of
bankruptcy. A new case is classified by examining which
leaf it reaches when traveling down through the tree. The
traversed path is determined by a sequence of tests to the
new case (i.e. a branch is selected depending on the
outcome of a test that the new case generates). When it
reaches a leaf in this way, it is considered similar to other
existing cases contained in the leaf as they have all
passed the same tests. Hence, the outcome of the new
case is the same as its neighbors and is assigned with the

Interact ive Induction o f Exper t Knowledge 395

Procedure Induct ion (S: TrainSet, T: Tree)
Begin

If S contains cases of the same class
Then label T with the class name and exit
Else Begin

For each numerical attribute A i, Do
Find a value v/to decompose the
training set into two subsets,
Calculate the entropy of the decomposition,
Choose the decomposition whose
entropy value is the smallest;

For each categorical attribute,
Decompose S by its classes
and Calculate its entropy;

Partition S into two or more mutually exclusive
subsets: S i, i = 1,..., k, based on the
attribute A s whose entropy value is the
smallest after decomposition.

Create a node T i for each subset S i, and
link it to the parent node as its child.

For i = 1 to k, call Induct ion (S i, T i)
End

End,

FIGURE 1. The ID3 algorithm.

class name labeled at the leaf. For example the prediction
of bankruptcy for case (0, 0, 0, 0.02, 0.05, 0.6, 0.04) is
YES, as it follows the path at the far left down to a leaf
labeled "YES".

3. I N T E R A C T I V E I N D U C T I O N

The fundamental basis for methods of decision tree
induction (or rule induction) is that two cases with
similar features are classified into the same class. The
success of such an approach relies on sufficient training
cases to cover every aspect of the problem domain
without inconsistency. Otherwise, the induced know-
ledge may be unreliable.

In practical applications, however, this assumption is
commonly violated. The sources of training cases are, in

general, from a domain expert or from historical data in
a maintained database. Difficulties arise typically
because the domain expert can provide only a few
selected examples, whereas historical data, if they exist,
may be obsolete or contain errors and missing values.

A further difficulty with inductive learning is in its
explanation capability. Explaining the reasoning process
by which a conclusion is reached is a key requirement for
an expert system. Rules induced from the training set
may, however, differ from those used by the expert. This
makes its explanation sometimes less acceptable to
human beings because the underlying process of reason-
ing used by the expert system may be incomprehensible
to users.

It is thus useful to have interactions between human
experts and inductive learning algorithms. This allows
human experts to provide useful knowledge, such as
hand-crafted tutorial examples, rules of thumb, general
hints and problem-solving strategies, to help an inductive
algorithm.

The inductive algorithm presented below is an
example that supports interaction with experts during its
learning process. After a knowledge structure is induced
from its training cases, the algorithm identifies cases that
cannot be correctly classified. These cases are brought to
the expert in the form of questions to be solved. Once
they are solved, they become new training cases to the
inductive algorithm for further learning. In this way,
expert knowledge is incrementally elicited and incorpor-
ated into the induced knowledge structure. A typical
scenario of the interactive inductive process is as
follows.

Initially, the knowledge engineer collects knowledge
from all possible sources. Different forms of knowledge
are stored differently. Rules (mostly from domain
experts) are stored in the rule set and tutorial cases
(mostly from the historical database) are stored in the
training set. Then, the algorithm tests any inconsistencies

Leaf 1 < ' ~
Leaf4

Leaf2 Leaf3

Leaf 5 Leaf 6

Bankruptcy : Y e s , No
C I : Consistency Opinion
C2 : Subject to Opinion
C3 : Going Concern
QI : Net Income/Total Assets
Q2 : Current Assets/Total Assets
(~ : Current Ratio

: Cash/Total Assets

FIGURE 2. An example of a decision tree for bankruptcy prediction.

396 Bingchiang Jeng et al.

Y

Xc a
la a a

x < . x / • • •

" b ~ - ~ Y < ~ / ~Y>Ye a a • b

Sb Sc Xc

a

a

b
b

Sc

Y c

Sb

b X

(a) A decision tree (b) Partition of feature space

FIGURE 3. Space partition by a decision tree.

in the knowledge structure represented by these two sets.
As both sets are incomplete at the beginning, contra-
dictory cases (i.e. cases classified differently by those
two knowledge sources) are identified. These cases are
then presented to the domain expert for further review.

Prompting experts to review contradictory cases has
two purposes. First, certain knowledge ignored by the
expert may be use to provoke him to describe the
inference rules in more detail. Then the contradictory
cases, after correction, become new examples to the
inductive algorithm for further learning. Revision of the
two sets triggers the cross-validation process again and
the above procedure is repeated. A sketch of this
approach is shown in Fig. 5.

An important feature of the above algorithm is its
ability to detect inconsistencies during the process of
interactive induction. This is important when two
different sources of knowledge are merged because

Sa

X

inconsistencies may exist. In the following we shall
present an algorithm for detecting inconsistencies.

`%

Sb

Given border

• • m e m o . • a e o

Y
Con-ect border

3.1. Strategy for Border Validation

A decision tree created from training cases can be
represented as a partitioned feature space. The induction
of decision trees (or rules) in some sense is a process to
maximize the internal similarity within the partitioned
subspaces. Each leaf of the tree corresponds to a
subspace, and each case in the problem domain corre-
sponds to a point in it. For example, a decision tree
shown in Fig. 3 partitions a two-dimensional feature
space with attribute (X, Y) into three subspaces. Sub-
spaces S, and St represent class A and subspace Sb
represents class B. A new case is evaluated based on the
subspace into which it falls (e.g. a case with X<Xc is
classified into class A).

Similarly, rules acquired from human experts can also
be illustrated as partitions of the feature space. The
problem of verifying whether two knowledge sources
(i.e. rules and the training set) have inconsistencies is
thus equivalent to verifying whether their partitions are
identical, which can be tested by simply determining if
there are cases that fall into different subspaces in these
two partitions. This is explained in detail in the
following.

A border is defined as a boundary that separates two
subspaces. A border is redundant if both subspaces
adjacent to the border represent the same class (e.g. the
one between subspace S, and Sc in Fig. 3). Incon-
sistencies occur when more than one non-redundant
border can be found to partition a space into subspaces.

=

Sa : Sc

a Y

: Sb

(a) ~ X and Y are shifted

X

Sa

x
u

Sc

Y

Sb

ON point o

OFF po in t x

Sa ,%

x

• e e • • w • • I • , • , • i mo

Sb

X X

(b)]Border shifts are d ~ with ON.OFF poinm

FIGURE 4. An example of border shift and the strategy to detect IL

Y

Interactive Induction of Expert Knowledge 397

TABLE 1
A Table of Path Conditions for the Bankrupt Decision Tree

Path F2 F3 F4 F5 Class

1 - - o 0 / . 0 2 9 5 - - o o / . 0 4 3 5 Yes
2 = 0 - o 0 / - . 0 0 9 3 - . 0 4 3 5 / o 0 N o

3 = 1 - o 0 / - . 0 0 9 3 - . 0 4 3 5 / o 0 Yes
4 - - . 0 0 9 3 / . 0 2 9 5 - . 0 4 3 5 / o 0 Yes
5 - . 0 2 9 5 / o 0 - o 0 / . 7 4 8 7 - N o

6 - . 0 2 9 5 / o 0 . 7 4 8 7 / o 0 - Yes

[, Local Refinement
L

RGURE 5. The process for interactive Induction.

k

Such a situation is called a border shift, since at least one
of them is incorrect. Inconsistency exists if and only if a
border shift exists. Figure 4(a) shows two examples of
border shifts.

A strategy for detecting border shifts, that requires
only two points (ON and OFF), can be found in [18]. The
ON point lies exactly on a given border to be verified,
while the OFF point lies slightly off in the open side of
the border. A border shift exists if the actual location of
the border fails outside the OFF point or inside the ON
point. In other words, no border shift exists if it passes
exactly between the two points.

For example, if border Y lies in a different location
(the broken line) in the left diagram of Fig. 4(b), the OFF
point would have been classified differently. Similarly,
the ON point would be classified differently in the right
diagram of Fig. 4(b), if the solid-line border is shifted to
the broken-line one. With carefully chosen testing points,
the strategy can detect a border shift effectively, if it
exists.

3.2. Algorithm for Test-Case Generation

The following is an algorithm for finding non-redundant
borders and verifying their correctiveness in a partitioned
feature space. We use the decision tree shown in Fig. 2 as
an example to illustrate it.

The first step of the algorithm is to create a table of
path conditions according to the decision tree. Each path
from the root to a leaf of the decision tree corresponds to
a row in the table. Attributes to partition the training
cases correspond to columns. Each field in a row records
an attribute condition defined by the path. The last
column denotes the outcomes. Table 1 shows the path
conditions of the decision tree in Fig. 2. Each cell in the
table gives the upper and lower bounds of an attribute.

The purpose of the path condition table is to
determine the adjacency relationship between two sub-
spaces. In the following, we show how to identify a
non-redundant border from the table. As non-redundant

borders require their adjacent subspaces to represent
different classes, adjacency relationships are determined
only between paths that represent distinct outcomes. In
our example, paths 1, 3, 4 and 6 belong to one group and
paths 2 and 5 belong to another. A non-redundant border
is identified when a path from one group is adjacent to a
path from the other.

The adjacency relationship of two paths is calculated
by assessing whether the intersection of their path
conditions recorded in the table is non-empty. This step
amounts to assessing whether corresponding attribute
conditions of the two paths overlap. The results of the
intersection define the border. For example, we can
determine whether paths 1 and 2 have an intersection by
examining whether their attributes overlap. The data in
Table 1 indicate that their intersections are F2=0,
F3 ~< -0.0093, F4="don ' t care" and F5 =0.0435. As the
intersection is non-empty, paths 1 and 2 are considered
adjacent to each other. Other non-redundant borders are
calculated similarly.

Given a non-redundant border, one can select an ON
point and an OFF point to verify its correctness. For
instance, cases to test the previously generated border
might be F2=0, F3=-0 .0093 , F4="don ' t care",
F5=0.0435 with class=YES (ON point) and F2=0,
F3=-0 .0093 , F4="don ' t care", F5=0.0436 with
class = NO (OFF point).

In our strategy, whether the ON point is located
exactly on the border is relative unimportant, as long as
the OFF point is chosen to be close to it. The test cases
are then compared with the outcomes predicted by
inferences from the rule set. If knowledge of the human
expert is incompletely included in the rule set or the
training data are imperfect, contradictions would occur.
These test cases are then presented to the human expert
for review. Otherwise the process proceeds to identify
the next non-redundant border and to generate other test
cases. At the beginning of the interactive induction
process, a relatively large number of contradictory cases
may be identified. After certain revisions, contradictory
cases reduce.

3.3. The Process of Interactive Induction

To summarize, the process of interactive induction as
shown in Fig. 5 consists of six phases: rule description,

398 Bingchiang Jeng et al.

case induction, contradiction identification, revision and
augmentation, local refinement and result validation.
Iterations occur in the first four phases until a termination
criterion is satisfied. Then it passes through the phases of
local refinement (optional) and result validation. This
process differs from the traditional inductive learning
that only performs case induction and result validation.
No interaction between the expert and the induced
knowledge is allowed.

The phase of rule description is a major step where an
expert can provide judgments and transform into rules.
Any manual techniques for eliciting knowledge
described before can be applied here. The set of rules is
not required to be complete as it will be refined in later
iterations. It is not very difficult to create such a rule set
as an expert can generally provide rules of thumb easily.
The more complete the rule set which describes the
expertise, the fewer iterations it needs to perform later. If
the rule set is not available, the step of identifying
contradictory cases will check with a domain expert
directly.

Although ID3 is the example that we used in this
research, the induction phase can use any inductive
learning algorithm. The only concern is how the
algorithm handles new training cases. It would be
inefficient if the algorithm flushes its old memory and
redoes the learning process from the beginning every
time a modification is involved. Utgoff has described an
incrementally inductive algorithm ID5R [41] which
processes new training cases by updating the existing
decision tree, instead of creating a new one. Thus the
incremental learning cost of the algorithm is relatively
low. The training cases for induction can be historical
data (if they exist), or hand-crafted tutorial examples
given by the expert.

The phase of contradiction identification detects
inconsistency between rules and training cases. It uses
the validation strategy described in Section 3.1. Contra-
dictory cases are passed over to the revision and
augmentation phase in which human experts re-inspect
the underlying process of reasoning and revise the rule or
the case descriptions. Cases after correction are included
in the training set that initiates another iteration of the
induction process.

In addition to simply resolving conflicts, defining a
sufficient feature set for an application domain is a
challenging problem for machine learning. The ID3
algorithm, for example, would perform poorly, if the
attributes of a set of training cases are not sufficient to
describe a domain. This problem however, is mitigated in
our approach as human experts may add features to solve
contradictions that cannot be solved by rule revision.
This way, the features in the feature set can grow.

The local refinement phase is optional. It is primarily
designed to fine-tuning the overall predictive accuracy of
inductive learning. For a problem domain to be modeled,
the predictive accuracy cannot be improved infinitely. A

limit is often reached after several iterations. This is
primarily due to the orthogonal partition of feature space
in ID3, which may not match the real situation exactly. In
this case, predictive accuracy cannot be improved by
further training. Local refinement that performs learning
independently on selected subspaces can then come into
play.

Finally, the induced knowledge needs to be validated.
A set of criteria for evaluating the quality of the
inductive result and determining when to terminate the
inductive process are critical. Other tools that facilitate
the validation and maintenance of the knowledge base
can also be useful in this stage.

4. PERFORMANCE EVALUATION

To evaluate this process, a prototype system implement-
ing the method has been developed. The kernel of the
system consists of three modules: one for inductive
learning based on ID5R (an incremental version of ID3)
[41], one for rule inference based on CLIPS and another
to select test cases. The user interface integrates these
modules.

To evaluate whether the interactive induction
approach is practically useful, we conducted experiments
on four hypothetical and one real problem. The hypothet-
ical problems are to learn a concept that defines a
geometric pattern, such as a circle, a polygon and so on.
The real world problem is to learn the rules that an expert
uses at a blackjack game to decide whether to call for
another card.

4.1. Learning Geometric Patterns

In this experiment, the system needs to learn a geometric
pattern. First, a circle was used for experiment. A point
falling inside a circle was assigned class 1 and others
were assigned class O, as shown in Fig. 6(a). Initially,
nine training cases were selected randomly from the
diagram. The rule provided by the expert was

Rule 1:IfX~<3 a n d X ~ > - 3 and Y~<3 and Y~>- 3 Then
Class = 1

Else Class=0;

The concept learned after the first iteration of the
induction is given in Fig. 6(b), from which the contra-
dictory cases identified are shown in Fig. 6(c). The final
concept induced after three iterations of the learning
process is given in Fig. 6(d). One can see that the result
approaches the actual circle pattern. In addition to the
nine given training cases, the system generates a total of
20 questions for the human expert to answer in the
learning process.

Figure 7 shows how other geometric patterns can be
learned in experiments. They all achieve satisfactory
results. The learned patterns are near the actual patterns.

Interactive Induction of Expert Knowledge 399

y

X X

(a) Initial Training Cases

~ . ~ l a s s 0

(b) First Inductive Result

Y

~ , , o . . -

_x :::Cia s i : : : . : . ; . ; . ; . :

(c) Identified Conflicting (d) Final Inductive Result
Cases

FIGURE 6. A learning process for the circle experiment.

The only limitation is that the nature of the orthogonal
partition with ID3 does not allow a real curvilinear
draw.

4.2. Learning Blackjack Games

Another experiment shows how a system can learn the
rules that a human expert uses in playing blackjack. The
game is played between a dealer and players. Each player
receives two reversed cards, while the dealer receives
one reversed and one obverse cards. An ace can count as
either 1 point or 11 points. During the game, a player
may request for more cards (to "hit") or to stay with the
current hand (to "stand"). A player wins if the total points
of cards in hand is below 21 points but greater than the
dealer's.

A human expert decides whether to hit or to stand
based on his current count in hand, with or without an
ace, and the dealer's obverse card. These three attributes
determine a decision. The expert's rules can be drawn in

a decision diagram as shown in Fig. 8(a). Initially five
randomly chosen cases were given for training. The rules
learned after three iterations are shown in Fig. 8(b),
which are pretty close to the actual rules used by the
expert.

5. RELATED WORK

The subject discussed in this article can also be seen as
a problem of concept learning in the machine learning
field. In particular, the way a domain expert interacts
with a learning system, can be formulated as a model of
learning with membership queries [1], in which an
instructor or oracle exists to answer any queries placed
by a learner. In this model, the learner has control over
what part of information it receives from a problem
domain next.

Although our work starts initially from a different
perspective, its result happens to be in accordance with
most recent work in machine learning. Cohn et al. [9]
presented an approach to learn a concept by generating
queries from a region of uncertainty, an area in the
domain where misclassification is still possible. An
interesting coincidence in their neural network's imple-
mentation is that it uses two networks S and G to identify
an uncertain case, when outcomes of the case are
inconsistent between them. They demonstrated in several
domains that the approach gives better learning results
for a fixed number of training cases than simply learning
from examples alone. This is encouraging since the
rationale of identifying regions of uncertainty is similar
to our identification of contradictory cases.

Another learning model similar to the above is the on-
line (or incremental) learning model in which the learner
answers a sequence of yes/no questions with immediate
feedback provided after each question. A variant of the
on-line learning model, called self-directed learning, has
been recently proposed by Goldman and Sloan [15]
which allows the learner to select the presentation order
for the instance. Thus it can be seen as a variation of
learning with membership queries in which the learner is
only "charged" for queries whose outcomes are unpre-

Y
. : . : . . . : - : .

--i. ' , ' ; : i : i : i ; : i : :: i .;.,~'~" ' • .~ ~

(a)

~ Class 0

x ~,:'J ..v.k-.~ t ; [. " x
. ' . ~.::;:

!!!i

(b)

FIGURE 7. Learning other geometric patterns.

Class 0

(c)

400 Bingchiang Jeng et al.

P l a y e r ' s

Current
Count

Player's
Current
Count

21
20
19
18
17
I6
15
14
13
12
11
10

D e a l e r ' s o b v e r s e card

3 4 5 6 7 g 9 1 0 A

- - S t a n d

- - -Hit

21
20
19
15
17
16
15
14
13
12
11
10

2 3 4 5 6 7 8 9 1 0 A

- - - S t a n d _ - -

With Ace Without Ace

(a) Exper t s ' rules to play b lackjack

Dealer's obverse card

3 4 5 6 7 8 9 1 0 A 3 4 5 6 7 g 9 1 0 A
21 21

2o - - S t a n d - - - ~ 2o _ _ _ Stand
19 19
18 18
17 17
16 16
15 15

14 -Hi t - - - H i t - - 14
13 13
12 12
11 11
1o lo Hit

W i t h A c e W i t h o u t A c e

(b) R u l e s l e a r n e d a c c o r d i n g t o t h e i n d u c t i v e a l g o r i t h m

FIGURE 8. Learning the blackjack playing rules.

• S t a n d . . _ H i t _

dictable. Theoretical results given by Goldman and Sloan
show that the performance of self-directed learning is the
best among all other commonly studied on-line and
query learning models.

Our process of learning by detecting contradictory
cases near the classification border is also in accordance
with the main results discovered from an autonomous
exploratory learning system (i.e. without an external
teacher). Winston [43] first drew attention to the critical
role of near-miss training examples. Recently the Protos
system, developed by Porter et al. [33], also used near-
miss cases to learn an examplar difference before
matching a new case to an existing examplar.

6. DISCUSSION AND CONCLUSIONS

In this article, we have presented an algorithm for
interactive induction and evaluated the performance of
the implemented system in learning goemetric patterns
and blackjack game strategies. The algorithm is simple
but efficient.

The contribution of this work is two-fold. First, it
suggests an effective way of integrating manual knowl-
edge acquisition and inductive learning to achieve a
more accurate knowledge base. Second, it provides a
new way of creating near-miss training examples and
learning from these examples. This allows critical
knowledge to be learned without a large number of
training cases.

Further research following this includes replacing ID3
with other learning methods, testing in other domains
and exploring the handling of certainty factors in
interactive induction. The current approach can also be

extended to acquire knowledge from multiple experts.
The main difficulty for knowledge acquisition from
multiple experts is how to combine their expertise and
find out any inconsistencies systematically. Due to
different subjective opinions, two competitive domain
experts may disagree with each other occasionally. Our
approach should be helpful in identifying conflicting
rules or cases during the knowledge acquisition process.

REFERENCES

F I. Angluin, D. (1988). Queries and concept learning. Machine
Learning, 2, 319-342.

2. Bainbridge, L. (1986). Asking questions and accessing knowledge.
In Future computing systems. New York: Elsevier.

3. Boose, J. (1984). Personal construct theory and the transfer of
human expertise. Proc. of the Nat'l Conf on Artificial Intelligence,
Austin, TX.

4. Boose, J. & Gaines, B. R. (1989). Knowledge acquisition for
knowledge-based system: Notes on the state-of-the-art. Machine
Learning, 4, 131-143.

5. Braun, H. & Chandler, J. S. (1987). Predicting stock market
behavior through rule induction: an application of the learning-
from-example approach. Decision Sciences, 18, 415-429.

6. Buchanan, B. G. et al. (1983). Constructing an expert system. In E
Hayes-Roth, D. Waterman & D. Lenat (Eds), Building expert
systems. Reading, Addison-Wesley.

7. Buntine, W. & Stirling, D. (1990). Interactive induction. In J. E.
Hayes-Michie, D. Michie & E. Tyugu (Eds), Machine intelligence,
Vol. 12, pp. 121-138, Oxford: Oxford University Press.

8. Carter, C. & Catlett, J. (1987). Assessing credit card applications
using machine learning. IEEE Expert, 2, 71-79.

9. Cohn, D., Atlas, L. & Ladner, R. (1994). Improving generalization
with active learning. Machine Learning, 15, 201-221.

10. Chung, H. M. & Silver, M. S. (1992). Rule-based expert systems
and linear models: An empirical comparison of learning-by-
example methods. Decision Science, 23, 687-707.

11. Eriksson, H. (1992). A survey of knowledge acquisition techniques
and tools and their relationship to software engineering. Journal of
System and Software, 19, 97-107.

12. Evans, B. & Fisher, D. (1994). Overcoming process delays with
decision tree induction. IEEE Expert, 60--66.

13. Feigenbaum, E. A. (1977). The art of artificial intelligence: Themes
and case studies of knowledge engineering. International Joint
Conference on Artificial Intelligence, Vol. 5, pp. 1014-1029.

14. Gaines, B. R. (1988). Knowledge acquisition: Development and
advances.. In M. D. Oliff, (Ed.) Expert system and intelligent
programming. New York: Elsevier.

15. Goldman, S. A. & Solan, R. H. (1994). The power of self-directed
learning. Machine Learning, 14, 271-294.

16. Hart, A. (1992). Knowledge acquisition for expert systems, 2nd
edn. New York: McGraw-Hill.

17. Hayes-Roth, E, Waterman, D. A. & Lenat, D. (1983). Building
expert systems. Reading MA: Addison-Wesley.

18. Jeng, B. & Weyuker, E. (1994). A simplified approach to domain
testing. ACM Transactions on Software Engineering and Method-
ology, 3, 254-270.

19. Jeng, B., Liang, T. P, & Jeng, Y. M. FILM: A fuzzy inductive
learning method for automatic knowledge acquisition. Forthcoming
in Decision Support Systems.

20. Johnson, P. E. (1983). What kind of expert should a system be?
Journal of Medicine and Philosophy, g, 77-97.

21. Kelly, G. A. (1955). The psychology of personal constructs., New
York: Norton.

22. Liang, 1". P. (1992). A composite approach to inducing knowledge
for expert systems design. Management Science, 3g, 1-17.

Interactive Induction of Expert Knowledge 401

23. Marchand, A., VanLente, E & Galen, R. (1983). The assessment of
laboratory tests in the diagnosis of acute appendicitis. American
Journal of Clinical Pathology, 80:3, 369-374.

24. Marcus, S. (1988). Automating knowledge acquisition for expert
systems. Boston, MA: Kluwer.

25. McGraw, K. L. & Harbison-Briggs, K. (1989). Knowledge
acquisition: Principles and guidelines. Englewood Cliffs, NJ:
Prentice-Hall.

26. Messier, W. E & Hansen, J. V. (1988). Inducing rules for expert
system development: an example using default and bankruptcy
data. Management Science, 34, 1403-1415.

27. Michalski, R. S. & Chilausky, R. L. (1980). Knowledge acquisition
by encoding expert rules versus computer induction from examples:
A case study involving soybean pathology. Int. J. Man-Machine
Study, 12, 63-87.

28. Michie, D. (Ed.) (1984). Introductory readings in expert systems.
New York: Breach.

29. Michalski, R., Mozetic, I., Hong, J. & Lavrac, N. (1986). The
multi-purpose incremental learning system AQ25 and its testing
application to three medical domains. In Proc. of the 5th Annual
Nat'l Conference on Artificial Intelligence, pp. 2041-2045, Phil-
adelphia, PA.

30. Mitchell, T. M. 0982). Generalization as search. Artificial
Intelligence, lg, 203-226.

31. Parsaye, K. (1988). Acquiring and verifying knowledge automat-
ically. A1 Expert, pp. 48-63.

32. Paterson, A. & Niblett, T. 0982). ACLS user manual. Scotland:
Intelligence Terminal Ltd.

33. Porter, B.W., Bareiss, R. & Holm, R.C. (1990). Concept learning
and heuristic classification in weak-theory domains. Artificial
Intelligence, 45, 229-263.

34. Quinlan, J. R. (2979). Discovering rules from large collections of
examples: a case study. In D. Michie (Ed.), Expert systems in the
micro electronic age. Scotland: Edinburgh University Press.

35. Quinlan, J. R. (1986). Induction of decision trees. Machine
Learning, 1, 81-106.

36. Rendell, L. A. (1986). A general framework for induction and a
study of selective induction. Machine Learning, 1, 177-220.

37. Ruff, R. A. & Dietterich, T. G. (1989). What good are experiments.
Proc. of the Sixth International Workshop on Machine Learning,
pp. 109-222, Ithaca, New York.

38. Scott, P. D. & Markovitch, S. (1993). t~xperience selection and
problem choice in an exploratory learning system. Machine
Learning, 12, 49-67.

39. Shaw, M. J. & Gentry, J. A. (1988). Using an expert system with
inductive learning to evaluate business loans. Financial Manage-
ment, 17, 45-56.

40. Turban, E. (1992). Expert systems and applied artificial intelli-
gence. New York: Macmillan.

41. Utgoff, P. E. (1989). Incremental induction of decision trees.
Machine Learning, 4, 161-186.

42. Wardle, A. & Wardle, L. (1978). Computer aided diagnosis--a
review of research. Meth. Inform. Med., 17, 15-28.

43. Winston, P. H. (1975). Learning structural descriptions from
examples. In P. H. Winston (Ed.), The psychology of computer
vision. New York: McGraw-Hill.

