Techniques

181

User Interface Design for Decision Support
Systems: A Self-Adaptive Approach

ng-peng Liang : :
Department of -Accountancy, Umuezsz(y of Illinois at Urbana-
Champaign, 1206 South Sixth Street, Champaign, IL 61820,
USA :

This paper presents a self-adaptive approach to user inier- -

face design. The primary philosophy of this design is that the
user interface must be aware of the changes in-its user’s
behavior and then adapt to it. Three different default policies
are proposed to control the adaptation of a user interface:
fixed default, dynamic default, and no default. Performance of
these pohcles are compared for various patterns-of usage.
Mechanisms that determine the optimal default value to reduce
the unnecessary effort are also discussed.

Keywords: User interface design, Decision Support Systems,
Self-adaptive design, Intelligent systems, Intelligent user inter-
face, :

Dr. Liang is an Assistant Professor at

Champaign. He holds Ph.D. and MA
degrees from The Wharton School of
the University of Pennsylvania, an
MBA from National Sun Yat-sen Uni-
versity, and a BS.in Engineering from
National Cheng-kung University (both
in Taiwap, ROC). He has published
many artlc]es in research journals, in-
cluding Database, Decision Sciences,
Decision Support Systems, and Journal
) of Management Information Systems.
His current research interests include design and implementa-
tion of decision support systems, model management, and
expert systems applications.

North-Holland
Information & Management 12 (1987) 181-193

- the University of Illinois at Urbana- -

1. Introduction

A computer-based decision support system (DsSs)-
is designed to improve unstructured or semi-struc-
tured decision making, It has three major compo-
nents; an interactive user interface, a database
management system, and a model management
system. Because the user interface is the channel
through which a user communicates with the Dss,
much of the power, flexibility, and usability of the
system depends on this interface.

Research in user interface design has increased
dramatically in the past decade. Most of it focused
on.one or more of the following topics:

1. Design Processes: e.g. the ROMC approach [28],
verb-oriented design [16], cognitive considera-
tions [26], and the nature of man-computer
interaction [9,22].

2. Representation formats: e.g. graphs or tables,
audio or video, color or not [7].

3. Dialog styles: e.g. Q/A style, menu selection,
input/output form, or other fancy input in-
struments such as touch .screen and mouse
[2,20,22,27].

4. Interface functions: e.g. help, tutorial, and error

messages [2,20]. ‘

Some preliminary findings and conmderaﬂons have

been presented [14,19,29].

' Recently much interest has been developed in
building adaptive interfaces [6,8,25,30]. In general,
adaptation refers to the ability of the system to act
appropriately in a given context. For example, an
adaptive system may make available tools relevant
to a particular task and change their functionality
to suit individual preference.

Traditionally the system designer has been re-
sponsible for designing the user interface based on
pre-determined requirements. However, because
continuous evolution is a major feature of DSS
[12,16], a static interface designed in the tradi-

0378-7206,/87/%$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)



182 Techniques

fional approach can hardly provide the required
flexibility. Therefore, interfaces that allow easy
adaptation to different user requirements are
highly desired. An empirical study also indicated
that adaptive design led to higher user satisfaction
[1].
" There are three approaches to designing an
adaptive interface:

1. user-involved adaptive design,

2. user-controlled adaptive design, and

3, self-adaptive design.

The user —mvolved adapuve dcs1gn requlres that

the user be' involved in the system adaptation
. process [10]: The designer and the user cooper-
. atively specify'and develop the first version of the
system; then the user evaluates the system with
the help of the designer. If the system is valuable,
- the user accepts it. Otherwise, the designer' ex-
amines the user’s behavior and modifies the sys-
tem accordingly.

Instead of having the designer develop the sys-
tem with the assistance of the user, the user-con-
trolled adaptive design allows the user to specify
the desired interface with an interface generation
language [4]. The system then creates the interface
based on the specifications. In this approach, the
user is fully responsible for the adaptation of the
system.

Although both the user-involved and the user-
controlled approaches provide the system with
flexibility, they place too much burden on the
user, The self-adaptive design allows the system to
adapt to the anticipated change automatically and
enables the system to share the responsibility for
adaptation. Its basic premise is that some changes
in a user’s behavior are predictable and, therefore,
~the system should handle them automatically.

This paper explores issues in developing a self-

adaptive interface and presents an approach that
‘controls automatic adaptation by keeping track of
user profiles and adjusting system defaults. A
- self-adaptive interface developed with this ap-
proach has two major features: it presents per-
sonalized interfaces to different users and it up-
dates its interface according to change in the
user’s behavmr

2. Overview of General Guidelines

Since many issues are unsolved, design of an
effective interface remains an art rather than a

Information & Management

science [23]. However, some general guidelines do
exist, They provide a basis for good interface
design. In general, these guidelines fall into three
categories: computer technology, task require-
ment, and user characteristics, _

Recent advances in computer software and
hardware, such as multiple windows, mouse, touch
screen, and audio input and output, have signifi-
cantly increased the diversity and flexibility of
human-—computer communication. Therefore, the
application of appropriate technology is essential
to effective interface design. Here “appropriate”

implies that the designer must consider other rele-’
vant issues in determining what technology best

serves the user. The most up-to-date technology is
not necessarily the most: appropriate. one. For
example, audio inputs and outputs are good in

some situations but may not be appropriate in the -

situation where confidentiality is important or a
quiet working environment is required.
Different tasks and users may also have differ-

.ent requirements. For example, empirical studies

have indicated that tabular output outperforms
graphics in simple jobs or situations where accu-
rate numbers are important; but graphic presenta-
tion is better if the job needs comparison, trend
analysis, or complex information [7]. In addition,
cognitive styles may also influence a user’s prefer-
ence for presentation formats [3].

Taking thiese three classes of factors into -
account, a good interface must fulfill the followmg '

requirements: :
1. Be diverse: support both mexpenenced and
experienced users.
2. Be forglvmg have good error recovenng capa~
bilities.
3. Be efficient: minimize the effort requlred to
- accomplish a job.

4. Be convenient: prowde good accessﬂblhty to all

operations.
5. Be flexible: provide multiple routes for access-
ing an operation.
6. Be consistent: minimize learning requirements
and unexpected actions.
7. Be helpful: provide good help and error mes-
sages.
A summary of the guidelines is given in Table
1. Since some recommendations are conflicting
(e.g. consistency and flexibility), effective interface
design involves delicate tradeoffs [19].




...............

Information & Management

Table 1

1L

o

General Principles

+ Provide sufficient functionality to make the system useful
- Have appropriate user involvement in the development
process

- Allow user control of the system

» Provide support 1o different levels of users, 1ncludmg
experlenced and inexperienced users

Provide appropnate combination of input/output de-
vices,

. Input Design

+ Provide multiple mput channels, e.g. voice recocmtlon,
mouse, etc.

» Use full-screen- onented interface for data entry and retri-

eval
» "Check .input mtegmy, including conﬁrmatmn of excep—
- tional inputs and error checking -
+ Minimize the effort required to complete an operatlon
Output Design
+ Provide multiple information channels, e.g. screen, printer,
etc.
+ Represent information in appropn’ate format to enhance
decision performance
- Use non-verbal signals, such as reverse video, beep, and
flashing characters
- Respond in a reasonable time
- Provide powerful report generator and use windows.

. Interface Functions

- Provide powerful commands, which include
— support command synonyms and abbrevia-
tions
~ provide productive syntax
- Aid the transition from novice to expert
- Allow the user to “macro-ize” or customize tasks
- Inform the user of the functions available in the system.

. User Control

- Allow reversible actions when mistakes are made

* Provide immediate feedback when a mistake is made

+ Allow the user to stop processing at any response point
without jeopardizing system integrity

« Provide information on curreni state, what is required
next, and what had happened previously.

. Interaction Style

+ Provide multiple interaction styles, e.g. menu selection,
commands, query-by—example etc. '
- Use consistent naming conventions and formats
- Provide near-natural language communications.

. Help and Error Messages

+ Provide on-line tutorjal aids and help facilities
- Provide sensible defaults to reduce the need for learning
- Provide sensible error messages when mistakes are made
Provide -short-cuts across menu-levels and in question/
answer mode
- Provide command syntax prompt and functions that al-
low the user to edit and save command strings.

T.P. Liang / User Interface Design for DSS 183
3. Adaptive Requirements of DSS

In addition to these, system adaptability is im-
portant to user interface design for Dss. It is
particularly necessary when the user needs and
expectations are likely to change frequently. On
one hand, adjusting an adaptable system is much
cheaper than designing a new system; on the
other, an adaptive interface has advantages [21],
such as:

1. It can be tailored for individual differences,
2. It enables users to carry out thelr tasks more
effectively, and

3. It allows the system to support- users with d1f— ,

ferent levels of experience.

Sprague and Carlson [28] divided system ﬂex1-
bility into four levels: changeable, adaptable,
modifiable, and evolutionary. From another point
of view, since a DSS integrates information and
computer technology to support human decision
making, it needs three kinds of adaptation: to a
new problem or task, to a new technology, and to
different user behavior.

Based on current technology, it is almost
impossible to build a system which can self-adapt
to a change in problem domain or new technol-
ogy. For example, a system is unlikely to install a
more powerful graphics terminal automatically;
equally, a DSS cannot solve a new problem satis-
factorily without being revised by the user or
designer. However, by implementing parameter
adjustment mechanisms which change system be-
havior by adjustmg some parameters [24], it is
possible for the system to ‘adapt to a changed
behavior “without requiring the involvement of
either the designer or the user (e.g. [9,13,17]). -

For example, Croft [6] proposed a self-adaptive
document retrieval system to improve the effec-
tiveness of document retrieval. It selects ap-
propriate search strategies based on user feedback
and the context of a query. Mason [21] also re-
ported a command prompting system designed for
enhancing the learnability of an interactive sys-
tem. This self-adaptive capability is particularly
important in developing a DSs generator. It allows
the DSS generator to tailor specific DSSs for multi-
ple users.



184 Technigues
4. Design of a Self-Adaptive Interface

To implement the parameter adjustment ap-
proach in a user interface design, the following
three issues are essential [18]:

1. How to identify and classify users;

Users must be categorized in order to de-

termine their requirements,

2. How to determine appropriate actions;
Knowledge about appropriate actions for a
particular type of user is required.

3. How to control the adaptation process; .
Mechanisms for controlling the system adapta-
tion process are required to ensure evolut1on in
a desired way

4.1. Patterns of Usage

Although design of such an interface is not a
very new idea, the area remains virtually undevel-
oped. One of the major reasons is that we do not
have a valid normative user model to indicate
interface features appropriate for a particular type
of users [5]. The complexity of human beings
makes the development of such models almost
impractical.

Instead of concentrating on a general user
model, system adaptation can also be achieved by
adopting heuristic methods. Several techniques
have been developed, including pattern-matching
and debugging [5]. Unfortunately, they were prim-

1. Consistent user -- a user who prefers a particular
representation or operation
frequently.

e.g., 1112111111 +uuu.s

2, Systematic user -- a user who changes preference
systematically.

e.g., 3333222221 ...000
e.ge,
3,  Random user -- a user who changes preference
randomly.

evg., 1213332312 ....4,

Note: 1 ,.. bar chart

2 ... line chart
3 ... table

Fig. 1. Sample patterns of usage.

Information & Management

arily designed for relatively structured environ-
ments, such as error handling and advice-giving,
To meet the adaptive requirements of Dss, the
method must focus on the evolutionary nature of
user behavior and allow the system to adjust itself
according to the anticipated user behavior. In
addition, the method must be transparent to the
user. That is, it must avoid interrupting the user’s

decision process in the course of data collection.

and system adaptation. Based on these criteria,
inferring a preference by analyzing prevmus usage
is natural.

The evolution of user behavior ¢an be divided

into three patterns: consistent, systematic, and

random [18]. Users who prefer the same presenta-
tion of information are consistent users. Users
who change their. preference in a partially predict-
able way are Systematic users. Users who change
their preference unpredictably in a given situation
are random users. Fig. 1 illustrates the difference
among these patterns. :

The reason that we classify patterns of usage is

because this information can predict the antic-.

ipated behavior and then control the system adap-
tation by providing proper default policies. Al-
though users may have different preferences, a
user may also- change usage behavior over time;
eg. a random user may evolve to a'consistent user
after several attempts. Therefore, patterns are not
permanently associated with users. They are de-
termined dynanucally when the system is used

4.2. Default Policies.

' A default determines the action when 10 rele-
vant information is provided by the user. A de-
fault policy is a strategy for assigning "defaults.

There are three such policies: fixed, dynalmc and.

no default (menu selection).

The fixed default policy offers a pre—detenmned
output format (e.g. a scatter diagram) or dialog
style (e.g. the prompt/response style) whenever an
operation is activated. The dynamic default policy
associates the default assignment with previous
usage records. If the user asks for an operation or
a representation different from the default, the
new operation or representation will replace the
old one. Depending upon a particular implemen-

tation, there are certainly other types of dynamic

policies; e.g. we may define a two-change policy




Information & Management

that sets a particular operation as the new default
after it has been requested for two consecutive
sessions. The no default policy offers a fixed menu
containing all available alternatives; this allows
the user to select one.

Different default policies allow the system to

_behave differently. For instance, a system desig-

ned for a beginner may need the no default policy.

After a period of learning, however, the system

may detect a particular pattern of usage, say, the
user always prefers pie chart presentation. In this
case, the system should change to a fixed default
policy with pie chart presentation as the default.

The advantage of the fixed. default policy is-
_that the user can correctly anticipate what will

appear when an operation is initiated. The major
disadvantage is that this may not reflect the user’s
present preference. The advantage and disad-
vantage of the dynamic default policy are exactly
the opposite of the fixed default policy. That is,
the system reflects the user’s current preference,
but it lacks consistency. The menu selection policy
gives the user opportunities to select, but needs
more actions and effort to obtain the result.

4.3. Mechanism for Default Control

In a self-adaptive interface, patterns of usage:
and default policies serve as parameters. We also
need a mechanism to control the evolution of the
interface. This mechanism collects usage records

“for each user, analyzes performance of various
“default policies, assigns the optimum default

policy, and then integrates user interface elements
(e.g. bar chart and pie chart subroutines) to build
the interface. The user communicates with the
system through the interface and at the same time
provides information to the system for further
evolution, Fig. 2 briefly illustrates the role of this

mechanism and the process of interaction.

Since a user’s behavior changes over time, sim-
ply partitioning users into three patterns and then
mechanically matching them with default policies
is not adequate. We need a mechanism that dy-
namically offers default policies based on user
actions. While developing such a mechanism, the
following issues must be considered:

1. Design objectives and performance measures,
2. Rules for calculating performance, and
3. Rules for assigning default policies.

T.P. Liang / User Interface Design for DSS 185

USER

L——] PATTERNS PERFORMANCE
"] OFUSAGE MEASURES

CONTROL

MECHANISM
DEFAULT INTERFACE
POLICIES ELEMENTS

USER

INTERFACE

. Fig, 2, Architecture of the self-adaptive mechanism, -

4.3.1 Objectives and Performance Measures

The performance measures indicate how the
design objectives have been achieved. Different
objectives and performance measures may there-
fore result in different designs. In developing
adaptive advice-giving systems, a common goal is
to facilitate user learning in the interaction pro-
cess (e.g. [5,6,12]). Since minimizing effort is one
of the major considerations in developing effective
interfaces, it can also be considered an ap-
propriate goal for self-adaptive design. This goal is
especially useful in information inquiry and pre-
sentation. Given this goal, the expected number of
keystrokes required for performing -an operation .
or presenting a piece of 1nformat10n _may be
adopted as a performance measure.
~ There are certainly other measures. For exam-
ple, perceived consistency (the fixed default and
menu selection policies are better than the .dy-
namic default policy) and user control over the
system (menu selection is better than. the other
two policies) are also good alternatives. A com-
bination of multiple measures is also possible. In
this case, however, a decision mode] will be needed
to combine them.

4.3.2 Rules for Calculating Performance

Based on the selected measure, rules can be
developed to calculate the performance of various
default policies, Since these rules may vary from
one implementation to another, we use an exam-
ple here to demonstrate their functions. Suppose
four users, 4, B, C, and D, share a DsS that




186  Technigues

presents an inventory report in four different for-

mats. Because these users have quite different
patterns of usage, the performance values and
optimum defaults for various default policies are
different, as illustrated. in Fig. 3. The performance
values in the Figure are expected numbers of
keystrokes for obtaining the inventory report. They
are calculated by dividing the expected number of

keystrokes for a particular default policy by the :

total number of keystrokes of the no default policy
(21, in this example). Appendix 1 provides a PRO-
LOG 1mplementatldn

4.3.3 Rules for Pohcy Selection

After determining the objective of design and
measuring the performance of various default
policies, rules are required to select the optimum
policy. Development of these rules is also highly
task-oriented. It varies substantially from one im-
plementation to another. For analyzing the previ-

ous example, the following rules are used in the

prototype of Appendix 1:

1. 1% the expected number of keystrokes of a policy
is less than 0.5,

Information & Management

THEN consider the policy as a candidate for de-
Jault.
2. IF more than one candidate fulfills rule 1,
THEN choose the one with the lowest expected
number of keystrokes.
3. IF more than one candidate fulfills rules 1 and 2,
THEN prefer fixed default policy to dynamic
_ policy. '
4. 1F no candidate fulfills rule 1,
THEN choose the no default policy.

Based on these rules, the optimum settings for
users A, B, C, and D can be determined. For
users 4 and D, since no policy has performance

“less than 0.5, the optimum policy is no’ default.

For user B, both the fixed default and the dy-

‘namic default policies have performance less than -
© 0.5. According to rule 2-the system will accept the
. dynamic default policy. For user C, the optimum

policy is fixed default; see Fig, 4 for a sample
session.

In summary, by providing the mechanism that"
examines usage records and controls default poli-
cies, an interface can be self-adaptive. This mecha-

Where: 1 ...
3.

bar chart

.. pie chart

‘Policies Fixed Dynamic Menu
' P;étterns Default Perform- | Default | Pexform- | Default | Perform
value ance value ance value ance
A 2 0,57 3 0.67 no 1.0
B 2 0.43 2 0.23 no 1.0
C. _2 0.29 1 0.57 no 1.0
D 3 0.71 3 0.91 - no 1.0
.Note:-Pattern A
123421343332213222223°"
+Pattern B .
311111112222222223222
*Pattern C . v
221222322222122423221
sPattern D
213431241423213314423

2 ... line chart
4 ... table

Fig, 3. Pcrformances of sample patterns.




Information & Management

~ run(pattern_b).

~ Default policy is fixed
Default value is 3
Performance is 0.905

~ Default policy is fixed
Default value is 1
Performance is 0,667

- Default policy is fixed
Default value is 2
Performance is 0,429

- Default policy is dynamic
Default value is 2
Performance is 0,231

o e o o o B e e o s o O e o B e ot B e e B e

e e e

The cptlmum default pollcy is dynamic
Current default yalue is 2

- The. expected performance of this settlng 15
0.231 keystrokes

Fig, 4. A sample session.

nism has the following functions:

1. Keep track of the usage pattern of each user,

2. Compute the performance under various de-
fault policies,

3. compare the performance of each of the poli-
cies and select the best for the current pattern
of usage, and

4. Assign the selected policy to the spe01f1c DSS
automatically.

5. Applications of the Self-Adaptive Design.. ‘

In the previous section, we described an ap-
plication of the self-adaptive mechanism. In ad-
dition to this, there are other applications. For
example, a DSS may tailor the sequence of in-
formation presentation for different users. Al-

though we do mot have enough evidence to con-

clude that the sequence of presentation may affect
decision making, a good presentation sequence
can increase the user’s satisfaction and reduce
unnecessary waste of time. ‘

In~ determining " the “appropriate sequence of
presentation, .there are also three default policies:
fixed, dynamic, and menu selection. A fixed se-
quence policy presents information in a fixed order,
which will not be changed unless the default is
changed. A dynamic sequence policy changes the

T.P. Liang / User Interface Design for DSS 187

order of presentation according to user behavior.
In this case, the user’s present action may affect
the future presentation sequence of the system;
e.g. if a dynamic policy is adopted and the user
has chosen to look at net profit prior to viewing
total sales, then next time the user invokes the
system, net profit will be shown before displaying
total sales. A menu selection policy offers a pre-
designed menu containing all available alterna-
tives. No output will be presented until the user
selects one. '

‘Another interesting application of the
self-adaptive mechanism is the development of a
group DSS (GDSS), which supports a group of users.
To meet various requirements of the users, adap-
tive'and personalized interfaces are crucial. = =

In addition, the mechanism is also valuablé in
non-Dss areas such as word processing. Currently
most wordprocessors adopt the fixed default policy
which sets up a standard document format until
the user changes it. Although this approach
eliminates surprise, it could be tedious for some
users if they have to change format every time
they start to use the system: With appropriate
application of the self-adaptive design, a word-"
processor could be more flexible; it may adopt a

~ dynamic default policy that creates a new style

sheet automatically after detecting a change in the
preferred document format.

"6. An illustrative Example

Consider a sales forecasting Dss which gen-
erates monthly sales information and presents the
information in eight different formats. Fig. 5
shows the available presentation formats (user in-
terface elements) and Fig. 6 shows the system
usage records for the past ten months.

When the system is activated, it first analyzes
the usage profile of the user to determine proper
default policies and values for each operation and
presentation sequence. Fig. 7 illustrates the pro-
cess by which the interface is organized. If the
policy is no default, the system will present a
menu (e.g. the global menu, menu a and menu b
in Figure 7).

Based on the rules already discussed, the sys-
tem assigns the fixed default policy to the first
representation (default value is a-4) and the dy-
namic default policy to the second representation



188  Techniques

Information & Management

a) Single Month Sales

(a-1) (a-2)
Sale S
ales MARCH ales MARCH
40 , 40 '
80 80 \/
20 20 '
10| . 10
0 ~L- 0
TV Radio Parls ' TV  Rado Parls
(a-8) (a-4)
MARCH
. MONTH: MARCH
ITEMS SALES
TV ‘ 35
~RADIO ‘25
PARTS 40
TOTAL 100
b) Three Months Comparison _
(b-1) (b-2)
Sales | M SIFIB [T WA
40 40 o/° Parts
30 30 7\\\ ™v
20 20 ® Radio
i0 10
0 ot
v Radio  Parls’ JAN FEB MAR
_ ' (b-3) (b-4)
JAN FEB MAR ITEMS |JAN | FEB | MAR
Paris TV Parts TV Paris v -
' . ™ 30 40 30
d | mapio | 30| 80| 25
PARTS | 20 | 30| 40
TOTAL 80 [100 | 100
Radio Raqlo : Radio
Fig. 5. User interface elements.
r month 1 2 3 4 5 6 718 9 10
representation 1.} a=hl a~h]a~h|a~3|a-h|a-b|a-4|a-b]|a-b]|a-h
representation 2 | b=1[ b=1|b=1{b=3 |b-3|b-2| b=2| b-2| b-4 | b-4

Fig. 6. Usage data of the example.




Information & Management

Determine

E

Default
Palicies

Default
(Rep,))
?

Global
Menu

Menn a - . a-4

Default
(Rep.)
?

h-4 Menu h

Fig. 7. Process for formulating the interface,

(default value is b-4). The expected number of

keystrokes for the dynamic policy equals 0.3, which

is the best in this case.

With regard to the sequence of presentation,'

previous usage records indicate a.consistent pat-

‘tern in which sales for a single month is first

presented (series @) and comparison of three
months” sales (series b) follows. Therefore the
best sequence is to adopt the fixed default policy
that presents series g prior to series b.
Accordingly, the system will present informa-
tion in the order of a-4 and b-4 at the eleventh

-~month:-If-the-user-requests new formats ‘such as

a-3 and b-3, then the default a-4 will not be
affected (because the default policy is fixed), but
the default b-4 will be changed to b-3 at the
twelveth month (because the default policy is dy-
namic).

T.P. Liang / User Interface Design for DSS 189
7. Conclusion

We have presented general guidelines for user
interface design and an approach to designing a
self-adaptive interface. Since a user’s preference
changes over time, it is'important for a Dss to be
adaptive. The proposed mechanism requires that
the system keep track of the usage profile for each
user, compute the performance of varions default
policies based upon the usage behavior, and then

‘determine the appropriate default for each oper-

ation and representation. Applying this mecha-
nism to interface design involves delicate tradeoffs

. among the anticipated behavior, system con- -

sistency, and user control over the system.

Since we do not have a valid model for pred1c—
ting human behavior, a self-adaptive interface may
have limitations; e.g. users may have a strong
desire to control the system and cognitively do not
like a self-adaptive system. In addition, the valid-
ity of the default control mechanism may affect
the value of a self-adaptive system. This indicates
two promising areas for future research: develop-
ing normative user models and evaluatmg adap-
tive methods empirically.

References

[1} Alavi, M. and Henderson, J.C.: “An Evolutionary Strategy
for Implementing a Decision Support System”, Manage-

. ment Science,-27:11 (1981) pp. 1309-1323,

[2] Bernett, J.L.; “Analysis and Design of the User Interface
for Decision Support Systems,” J.L. Bennett (ed.), Build-
ing Decision Support Systems, Readmg Addlson-WesleyA
(1983).

[3] Blaylock, B.K. and Rees, LD, « Cogmtwe Style and the
Usefulness,of Information,” Decz.won Sciences, 15:1 (1984)
pp. 74 -91. .

[4] Bourmque R. and Treu, S.: “Specification and Genera- - -
tion of Variible,: Personalized Graphical Interfaces,”. In-
ternational Jour);al of Man-Machine Studies, 22 (1985)
pp. 663-684. .

[5] Carrol, J.M. and“‘McKendree, J.: “Interface Design Issues
for Advice-giving Expert Systems,” Communications of the
ACM, 30:1 (1987) pp. 14-31.

[6] Croft, W.B.: “The Role of Context and Adaptation in
User Interface Design,” International Journal of Man—
Machine Studies, 21 (1984) pp. 283-292.

[7] DeSanctis, G.: “Computer Graphics as Decision Aids:
Directions for Research,” Decision Sciences, 15:4 (1984)
pp. 463-487.

[8] Edmonds, E.A.; “Adaptive Man—Computer Interface,” in
M.J. Coombs and J.L. Alty (eds.), Computing Skills and
the User Interface, New York: Academic Press (1981) pp.
389-426.




190  Technigues

[9] Edmonds, E.: “The Man—-Computer Interface; A Note on
Concepts and Design,” International Journal of Man-
Machine Studies, 16 (1982) pp. 231-236,

[10] Good, M.D,, et al.: “Building a User-Derived Interface,”
Communications of the ACM, 27:10 (1984) pp. 10321043,

[11] Hagglund, S, and Tibell, R.: “Multi-style Dialogues and
Control Independence in Interactive Software,” in T.R.G.
‘Green and S.J. Payne (eds.), The Psychology of Computer
Use, New York: Academic Press (1983) 198 171-190.

[12] Hurst, E.G,, Jr.: “The Role of Humans in Decision Sup-

port Systems,” Working Paper 78-02-01, Department of .

Decision Sciences, The Wharton - School, University of
Pennsylvania, 1978,

[13] Innocent, P.R.: “Towards Self-Adapnvc Intcrface Sys-
tems,” International Journal of Man— Machine Studies, 16
(1982) pp. 287-299.

[14] James, E.B.:
23:1 (1980) pp. 25-28. -

[15] Keen, P.G.W.: “Adaptive Design for Decision Support .

Systems,” Data Base, 12:1,2 (1980) pp. 15-25.

- [16] Keen, P.G.W. and Gambino, T.J,: “Building a DSS: The

Mythical Man-Month Revisited,” in J.L. Bennett (eds.),
Building Decision Support Systems, Reading: Addison-
Wesley (1983).

[17] Liang, T.P.: “A Self-Evolving User Interface Design for
Decision Support Systems,” Proceedings of the Seventeenth
Hawaii International Conference on System Sciences (1984)

pp. 548-557.

[18] Liang, T.P. and Jones, C.V.: “Design of A Self-Evolving
Decision Support System,” Journal of Management Infor-
mation Systems, 4:1 (1987) pp. 59-82.

[19] Maguire, M.: “An Evaluation of Published Recommenda-
tions on the Design of Man-Computer Dialogues,” Inter-
national Journal of Man — Machine Studies, 16 (1982) pp.
237—262 .

“The User Interface,” Computer Joumal :

Information & Management

[20] Malone, T.W.: “Hemristic for Designing Enjoyable User
Interface: Lessons from Computer Games,” in J.C,
Thomas and M.L. Schneider (eds.), Human Factors in
Computer Systems, Norwood, N.J,: Ablex Publishing Co.
(1984) pp. 1-12,

[21] Mason, M.V,: “Adaptive Command Prompting in an On
line Documentation System,” International Journal of
Man— Machine Studies, 25 (1986) pp. 33-51,

[22] Norman, D.A.; “Stages and Levels in Human~Machine
Interaction,” International Journal of Man Machine Stud-
ies, 21 (1984) pp. 365-375.

[23] Pew, R.W.,, et al: Research Needs for Human Faciors,
National Academy Press, Washington, D.C, (1983).

[24] Rich, E.: Artificial Intelligence, New York: McGraw—Hlll
(1983).

[25] Rissland, E.L.: “Ingredients of Intelligent User Inter-

faces,” International Journal of Man ~ Machine Sludzes 21

(1984) pp. 377-388.

[26] Saja, A.D.: “The Cognitive Model: An Approach to De-

signing the Human-Computer Interface,” 4CM SI GCHI
Bulletin, 16: 3 (1985) pp. 36-40. .

[27] Savage, R.E. and Habinek, J.K.: “A Multi-level Menu-
Driven User Interface: Design and Evaluation through
Simulation,” in J.C. Thomas and M.L, Schneider (eds.),
Human Factors in Computer Systems, Norwood, N.J,:
Ablex Publishing Co. (1984) pp. 165-186.

[28] Sprague, R.H. and Carlson, ED.: Building Effective Deci-
sion Support Systems, N.J.: Prentice-Hall (1982),

[29] Stohr, E.A. and White, N.H.: “Use Interfaces for Deci-
sion Support Systems: An Overview,” International Jour-
nal of Policy Analysis and Information Systems, 6:4 (1982)
pp. 393-423.

[30] Tyler, S.W. and Treu, S.: “Adaptive Interface Des1gn: A
Symmetric Model and A Knowledge-based Implementa-
tion,” SIGOIS Bulletin, 7:2-3 (1986) pp. 53-60.




v‘select([],[nq_default,menu,l.O]). ) ' : o

Information & Management T.P, Liang / User Interface Design for DSS 191

Appendix: An Implementation

/% data base of user profile */

proflle(pattern a,l
proflle(pattern by [
proflle(pattern c,[
proflle(pattern da,[

NN W
N~ ~ <~ =
PN EPEN
WRPW

/* Main Program */

run(User):~
profile(Usexr,Profile),
analyze(Profile,Default_candidates),
select (Default candidates,Best),
report (User,Best) .
run(User) :—
nl wrlte('SOrry ~- usage data not available !!'),

©' nl,nl,!.

analyze(Profile, Result)'—
fixed default(Profile,Candidacy 1),
dynamlc default (Profile,Candidacy 2),
append ([Candidacy 1], [Candidacy_ 2], Resultl),
delete([],Resultl,Result).

select (Default candidates,Best):-
list length(Default candidates, L),
=1,
first(Best,Default candidates).
select (Default candidates,Best):-
list length(Default candidates, L),
‘I=2,
first(Fixed,Default candidates),
delete head(Fixed,Default candidates,Default candidates_ 2),
first(Dynamic,Default candidates_2),
cdompare (Fixed,Dynamic, Best).

compare (Fixed,Dynamic,Best) :~
third (P2,Dynamic),
third(P1l,Fixed),
P1>P2,
append (Dynamic, [],Best)
compare (Fixed,Dynamic, Best) :
append (Fixed, [],Best).

report(User,[Pollcy, Value, Performance]):-nl,nl,

write (' --m—mm e e '),nl,
wrlte( My suggestions for '),write(User),nl,
write(!' —— - '),nl,nl,

write(' The optimum default policy is <!'),

write(Policy) ,write('>'),nl,

write(! current default value is <),

wrlte(Value) ,write('>'),nl,

write(' The expected performance of this setting is ') /nl,
write(Performance) ,write(’ keystrokes') nl,nl,




192 Technigues

Write( ¥ o o e e i e e e e e P e et e e i o e o o e e o e S ' )

fixed default(Profile,Candidacy 1):
1ist length(Proflle L) ,L>0,
count (Profile, L, Performance),
candidate 1(Performance Candidacy 1).
fixed default(Profile,[]).

count ([1,_,[1). '

count (Profile, L, Performance) : -
first (F1, Proflle) list length(Profile,Ll),
delete (F1,Profile,Data_1),
list_ length(Data_ 1 L2),
P1 is 1 ~ (L1 - L2) / L,
P1 > 0.5,!,nl, -
write('~ Default policy is leEd'), nl,
write(' Default value is '), wrlte(Fl), nl,
write(' Performance is '), ertE(Pl), nl,
count(Data_1,L, Performance)

count (Profile, L, Performance)
flrst(Default value,Profile),list 1ength(Pr0f11e L1),
delete (Default : value Profile,Data 1),
list length(Data 1 L2),
Perf is 1 - (L1 - L2) / L,nl,
write ('~ Default policy is flxed'), nl,
write(' Default value is '), write(Default value), nl
write(' Performance is '), write(Perf), nl,
append ([Default value],[Perf],Performance) .

4

candidate 1 (Performance, Candidacy_1):

list 1ength(Performance L),!,

>0,

append([flxed] Performance,Candidacy 1).
candidate 1([],[]).

dynamic_ default(Proflle Candidacy 2):
calculate (Profile,Performance),
candidate 2(Performance Candidacy_ 2).

dynamic_ default (Profile, 11) .

calculate (Profile, [Default_value Performance]).
list length(Proflle L),L>0,
keystroke(Proflle Key), 1ast(Defau1t value, Profile),
P is Key/L, nl,
write('- Default pollcy is dynamlc'), nl
write(' Default value is '), wrlte(Default _value), ni,
write(' Performance is '), write(P),nl,!,
P<D.5,
Performance is P.
calculate(_ ,[1)-

keystroke(Proflle Key):
f1rst(F1 Profile),
delete_head(F1,Profile,Data 1),
match head(F1,Data_1),
keystroke(Data 1,Key).

Information & Management




. T S

Information & Management T.P. Liang / User Interface Design for DSS 193

keystroke (Profile, Key):~
first (F1,Profile),
delete_head(F1,Profile,Data_1),
not matech(Fl,Data_1),
keystroke (Data_1,Keyl),
Key is Keyl#tl.
keystroke([],0):~

candidate_ 2 (Performance,Candidacy 2):~
list_length(Performance,L),!,
L>0, 8
"~ append ([dynanmic], Performance candidacy 2).
candidate_2([],[]).

/* Utilities */
first (X, [X|Anything]).
last (E,List) :-append(_,[E],List).
third (X, [A,B,X]).
append([],List_1,List 1).
append ([A_. head]Tall 17,List 2,[A healeall_l then_ llst . 2]):-
append (Tail_1,List 2 Tall 1 _then list 2)
delete_head(Element,[ElementlTall],Tall):—
delete(_,[1,[]).
delete(Element [ElementlTall] LlStl)
delete(Element,Tail,Listl).
delete (Elenment, [Anlealll] [Any|Tail2]):-
_ delete(Element, Taill, TallZ)
list length([],o).
list 1ength([x|Ta11] Length)'-llst length(Tail,K),
Length is K+1.

matcbﬁhead(Element,[ElementlAnything]).

e




