-

Design of a Self-evolving Decision
Support System

TING-PENG LIANG and CHRISTOPHER V. JONES

TING-PENG LIANG is an Assistant Professor in the Department of Accountancy,
College of Commerce and Business Administration, University of Illinois at Ur-
bana-Champaign. He received an MBA degree in 1982 from National Sun Yat-sen
University, Taiwan, Republic of China, and an M.A. in 1985 and a Ph.D. in
information systems in 1986 from The Wharton School, University of Pennsylvania.
His research interests include decision support systems, expert systems, model
management systems, and implementation issues of information systems.

CHRISTOPHER V. JONES is an Assistant Professor in Decision Sciences, The Wharton
School, University of Pennsylvania. He received an M.A. in 1983 and a Ph.D. in
1985 from Cornell University. His research interests include computer graphics,
decision support systems, and computer simulation.

ABSTRACT: The paper presents a self-evolving approach to decision support systems
(pss) design. The basic premise of this approach is that a Dss should be aware of how
it is being used and, then, automatically adapt to the evolution of its users. With self-
evolving capabilities, a Dss will be able to provide a flexible menu hierarchy and a
dynamic user interface.

The major difference between the self-evolving design and a Dss developed by
current approaches such as system development life cycle and user-involved evolu-
tionary design is that the former has an extra component—the evolutionary mecha-
nism—to control the evolution of the system. In order to develop self-evolving
capabilities, the following three components must be developed: (1) a database of
user profiles to keep track of related system usage data, (2) a knowledge base to
store rules for determining appropriate system default policy, and (3) a control
mechanism to control the evolution of the system.

KEY WORDS AND PHRASES: Self-evolving design, decision support systems, informa-
tion systems development.

Introduction

THE DESIGN AND IMPLEMENTATION STRATEGY is crucial to the success of
information systems. Currently two approaches are widely used: system develop-
ment life cycle (spLC) and evolutionary design. SpLc focuses on the formal proce-
dure of system design and requires that the system designer determine all relevant

Journal of Management Informarion Systems{Summer 1987, Vol. 4, No. 1

ah

60 TING-PENG LIANG AND CHRISTOPHER V. JONES

user requirements before a system is actually developed. The evolutionary design,
on the other hand, appreciates the evolutionary nature of information systems and
the importance of user involvement in the system development process. The design- .
er develops a simple system in a short time and then gradually modifies the system to
meet the user’s requirements. ‘

Because decision support systems (pss) are focused on the support of semi-
structured or unstructured decisions with ambiguous user requirements, most litera-
ture in decision support systems argues that evolutionary design is more appropriate
to Dss design since it provides the flexibility needed in the system development
process [1, 8, 9, 18, 22, 24]. For example, Alavi and Henderson’s research showed
that evolutionary design is more effective than sprc in both system utilization and
user satisfaction of pss [1]. In a recent survey, Watson and his colleagues also
reported that evolutionary design was the dominant strategy for developing pss [24].

The evolutionary approach, based on dividing responsibility for system evolution
and development between the user and the designer, can be further divided into two
different categories: user-involved and user-developed system design. User-
involved evolutionary design is the more popular approach of the two, and in most
Dss literature ‘‘evolutionary design’” usually implies user-involved evolutionary
design. The approach places primary responsibility for Dss evolution on the design-
er, with some help from the user. In the user-developed approach, however, users
develop their own Dss with the help of the designer and are responsible for the
evolution of the system. Basically, both of these approaches require heavy human
involvement in the process of system evolution, although they do provide flexibility
in the system development process. The system plays no role except as a passive
target to be modified.

The purpose of this article is to present a third approach, the self-evolving system
design. It focuses on applying artificial intelligence techniques to develop self-
evolving capabilities which allow a Dss to adapt to the evolution of user requirements
automatically. A Dss with self-evolving capabilities is called a self-evolving Dss.
Examples of self-evolving capabilities include:

(1) a dynamic menu that provides different menu hierarchies to fulfill different
user requirements,

(2) a dynamic user interface that provides different output representations for
different users, and

(3) a model selection scheme that facilitates the model selection process to satisfy
different preferences.

In developing a Dss generator that serves as a Dss development environment, such
capabilities are particularly important.

Motivations for developing a self-evolving decision support system are as fol~
lows:

1. Increasing the Flexibility of a System. Evolution is one of the most important
characteristics of the pss development process. In order to reduce the burden on the
user and the designer for system evolution and to increase the adaptability of the
system, some capabilities of self-evolution should be built into a Dss.

SELF-EVOLVING DECISION SUPPORT SYSTEMS 61

2. Reducing the Effort Required to Use the System. For most decision makers,
learning how to use an information system needs much time and effort. Therefore, it
would be more reasonable to have a system adapt to its user rather than to ask the
user to adapt his behavior to the system [9].

3. Enhancing Organizational Control over the Organization’s Information Re-
source. Because different users usually have different requirements for developing
Dss to support their decision making, it is very unlikely that a single pss will be able
to support all users without sacrificing user satisfaction or decision performance.
Therefore, many Dss are tailored to meet their users’ specific requirements. Devel-
oping different nss for different users, however, may cause two major problems.
First, the user may hide the information generated by the pss, which would jeopar-
dize organizational control over its information resource. Second, the effort invest-
ed for system development may be redundant, which is uneconomical. A self-
evolving Dss, one which generates different versions of the pss for different users,
will be able to effectively offset these two drawbacks [3, 4, 19].

4. Encouraging System Sharing. In a self-evolving pss, different users may share
a system, which can avoid wasting cost and time for developing different pss for
different users.

The key idea of the self-evolving approach presented in this article is that a system
can control its evolution by adjusting its default values for performing operations. Its
implementation is basically an extension of the current Dss development approaches.
Although progress in artificial intelligence has not created any technique that can
provide a system with full capability for self-evolution, it is already possible, based
on current technology, to develop a system with a partial capability for self-evoluiton
[18]. For instance, using techniques that adjust system defaults based on previous
and anticipated usage behavior, a self-evolving Dss can adapt to a user’s changing
behavior.

In the remainder of this article, current approaches, including spic, user-in-
volved, and user-developed systems, will be briefly reviewed. Then, the philosophy,
architecture, and implementation of the self-evolving design will be discussed.
Finally, an example that illustrates the application of the self-evolving approach to
Dss design will be described.

Overview of Current Design Approaches

SDLC Approach

The primary objective of the traditional sprLc approach is to structure the develop-
ment process by offering a specific sequence of procedures and guidelines to the
system designer. A typical development cycle includes the following steps:

(1) feasibility study,

(2) system analysis,

(3) logical system design,

_/‘

62 TING-PENG LIANG AND CHRISTOPHER V. JONES

(4) physical system design,

(5) documentation,

(6) testing operation and maintenance, and

(7) post audit.

Since the formal specification of the system to be developed and the precise
procedure for system development can better organize the development process and
increase the efficiency of system development, the sbLc approach has been widely
used in the development of many information systems. Unfortunately, for the devel-
opment of Dss, this approach normally requires a lengthy development time and has
limited user involvement [9, 24], which limits its capability to meet the unstructured
and changing environment of DSS.

User-involved Evolutionary Approach

A typical user-involved evolutionary design develops a simple system in a short time
and then, based on feedback from the user, iteratively refines, expands, and modifies
the system through the cycle of analysis—design-implementation-evaluation. In the
development process, the system designer and the user design and implement the
first version of the system. Then the user evaluates the system in cooperation with
the designer. If the system is useful, the user continues to use it. Otherwise, the
designer and the user specify additional requirements and modify the system accord-
ingly. After completing the modification, the user evaluates the new version and
determines whether it needs further modification. The process continues as needed.

Although the user-involved evolutionary design approach provides both extensive
user involvement and the required flexibility and adaptability to the system, it still
has the following drawbacks [3, 6]:

1. A large amount of user time is required, and users of Dss are often very busy;

2. A highly talented system designer is required, but such experts are scarce;

3. The Dss may need to be redesigned and reprogrammed for efficiency after
several generations of evolution;

4. The process is susceptible to user and implementor turnover, such turnover is
high in most companies;

5. The continual change makes the user feel that an outsider—the system design-
er—is interfering with the decision process; and

6. It is inefficient to develop a Dss with more than two or three users, each with
different requirements, because much time is needed to coordinate different require~
ments.

User-developed Systefh Approach

The premise of the user-developed system approach is that no one knows more about
the user’s requirements than the user, and, therefore, it is better to have users design
their own Dss. In order to apply this approach, a system development environment

SELF-EVOLVING DECISION SUPPORT SYSTEMS 63

that implements Sprague’s three-level framework for pss development is very help-
ful. Dss are divided into three levels in the framework: specific pss, pss generator,
and Dss tool [21, 22]. A specific Dss is a Dss that actually supports the user in decision
making. For example, a pss for production scheduling is a specific pss. A Dss
generator is a package of hardware and software that provides a set of capabilities to
build specific pss quickly and easily. For example, spreadsheet software may be
considered as a Dss generator because it can support many specific pss such as cash
management systems and inventory control systems. Dss tools are hardware or
software elements that facilitate the development of specific Dss or Dss generators. A
graphics package is one example of a Dss tool. In the user-developed system ap-
proach, users work with a Dss generator to develop their specific pss for decision
making. '

Although having users develop their own Dss has been considered promising, it
still has disadvantages [2, 4, 16, 19]:

1. It will significantly increase the burden on the system user, whose time is
already very limited;

2. The user may not have enough technical expertise to develop a good quality
system; even if such development is possible, 2 long training period may be re-
quired;

3. The elimination of the division of labor between the designer and the user may
cause inappropriate or inefficient system development;

4. The approach may encourage the growth of private information systems, that
is, users holding their own information, which would hinder the flow of information
within an organization;

5. The approach may cause information control problems in an organization; for
example, different systems developed by different users may generate inconsistent
information for the same decision; and

6. The system a user can develop is heavily limited by the capability of the
employed Dss generator; therefore, the development of a good Dss generator be-
comes crucial to the success of this approach.

Philosophy of the Self-evolving Design

WITH A BRIEF REVIEW of current design approaches, it is obvious that the scarcity
of users’ and designers’ time is among the major limitations for both the user-
involved evolutionary design and the user-developed system approach. In order to
effectively offset this limitation, designing a system with self-evolving capabilities
bcomes a natural choice. In Figure 1, the philosophies of various approaches are
llustrated in terms of the division of labor among the system, the designer, and the
user. On the one hand, the user has limited responsibility for design and implementa-
tion in the spDLC approach, some responsibility in the user-involved evolutionary
approach, and major responsibility in the user-developed system approach. The self-
evolving design, on the other hand, requires that the system share the responsibility
with the user and the system designer.

64 TING-PENG LIANG AND CHRISTOPHER V. JONES

C Syste@

Self-evolving
Design

. -
@esgner)- —-{_ User
SDIC User—involved User developed
Approach| [Evoluticnary Approach| [System Approach

Note: SpLc = system development life cycle.

Figure 1. Division of Labor among Various Agents

The self-evolving design assumes that the evolution of a system is not completely
unpredictable. Some types of evolution are more structured and are partially predict-
able, while others are more unstructured and less predictable. The system must
adapt to predictable evolution automatically and leave the unpredictable evolution to
system designers and users. That is, if the evolution is within the anticipated range,
then the system will handle it automatically. Otherwise, a major revision of the
system must be undertaken by the system designer and the user to handle the
unanticipated evolution. Either the user-involved or the user-developed approach
must be used.

The advantages of the self-evolving design are two-fold:

(1) For a Single-User DSS. So long as the evolution is within the range the pss can
handle, the system can automatically adapt to the user’s changing requirements,
which will significantly increase the flexibility of the system.

(2) For a Multiple-User DSS. The system can identify different users and provide
different versions of the Dss for them, which will be able to enhance organizational
control over its information resource and facilitate system sharing in an organiza-
tion. For example, based on their revealed preferences, a self-evolving Dss might
display sales forecasts as bar charts for manager A, whereas it might display the
same information as line charts for manager B.

Implementation of the Self-evolving Design

AN IDEAL SELF-EVOLVING Dss must provide self-evolving capabilities in the
following three areas:

SELF-EVOLVING DECISION SUPPORT SYSTEMS 65

(1) changes in the problem/task domain,

(2) changes in technology, and

(3) changes in the user’s behavior.

Based on current technology, it may not be easy to develop a system which can
automatically adapt to a change in the problem domain or technology. For example,
a Dss cannot adopt a more powerful graphics terminal unless the designer has
installed the required tool to support the terminal. Nor can a pss automatically solve
a new type of problem without employing a new model developed either by the user
or the designer. It is possible, however, to design a system able to adapt automatically
to changes in the user’s behavior without requiring the involvement of either the
designer or the user. Therefore, the self-evolving approach proposed in this article is
focused on building capabilities to meet changes in the user’s behavior.

The key idea of the approach is that a system can control its evolution by adjusting
its default policy. In most information systems, defaults have been widely employed
for operating a system in the case where a user entry is lacking. The default policy is
a policy that controls the set of allowed actions, results produced, and the way those
results are presented by adjusting system defaults. In other words, the major param-
eter to be adjusted to control the evolution of the system is a set of system defaults.
The system dynamically adjusts those defaults based on the anticipated requirements
identified by a set of predetermined rules for system evolution. This is an application
of the parameter adjustment approach widely used in machine learning, which
changes the value of a certain parameter to control the behavior of the system [18].
By adjusting its default values, a system can learn how it has been used and then
adapt its behavior to meet changes in its user requirements.

In the remainder of this section, first, the architecture of a self-evolving Dss will
be portrayed. Then, design of a control mechanism which integrates various compo-
nents in a bss and an evolution management system that maintains system usage data
will be discussed. Finally, possible applications of this approach will be presented.

Architecture of the System

A self-evolving pss is composed of the following five major components:

(1) database subsystem, '

(2) model base subsystem,

(3) user interface subsystem,

(4) evolution subsystem, and

(5) a central control mechanism for coordinating those subsystems.

The database subsystem consists of the database management system (DBMS) and
the database which contains all data related to the decisions to be supported. The
model base subsyst€m consists of models in the model base and the model base
management system (MBMS). The user interface subsystem consists of elements for
building a user interface and the user interface for Dss-user communication. The
evolution subsystem consists of system usage data pertinent to the evolution of the

66 TING-PENG LIANG AND CHRISTOPHER V. JONES

b E
Data B y Usage
Base M g Records
)
Control | Dser USER
Mechanism Interface
} M / User
Model B Interface
Base M Elements
5

Notes: DBMS = database management system; EMS = evolution management system;
MBMS = model base management system.

Figure 2. Architecture of a Self-evolving Decision Support System

system and the evolution management system (EMs) that manages the evolution of the
system. Although the system usage data and the decision data may actually be stored
in the same database, conceptuaily they are considered two separate databases
because of their different purposes. Figure 2 illustrates the relationships among
these components.

The core of a self-evolving Dss includes the control mechanism and the evolution
subsystem. The control mechanism passes parameters between different subsystems
and integrates them to support the user. The evolution management system handles
system usage data and rules that determine appropriate default policy for a specific
version of a Dss. The functions of the database subsystem, the model base subsys-
tem, and the user interface subsystem for the self-evolving Dss are almost the same as
those for a pss developed by current design approaches.

Functions of the Control Mechanism

The control mechanism coordinates all operations of the self-evolving Dss. When a
user accesses the system, the mechanism works as follows:

(1) evokes the evolution management system, which retrieves the usage record of
the user from the database of usage records;

(2) obtains rules for defermining appropriate defaults;

(3) assigns the most appropriate default policy for the system, based on the rules
obtained at Step 2;

(4) collects new usage records and stores them in the database of usage records;

SELF-EVOLVING DECISION SUPPORT SYSTEMS 67

= Usage Records Performance Rules
Control
Model
Default DSS
Policy Elements
Specific DSS
Users

Note: Dss = decision support system.

Figure 3. Mechanism of Self-Evolution

(5) assigns the defaults determined by the evolution management system to the
system, integrates the database subsystem, the model base subsystem, and the user
interface subsystem, and then

(6) provides the integrated pss to the user.

Figure 3 illustrates the process for self-evolution. First, the user accesses the
specific Dss. The system then collects the user’s usage data and stores them in the
usage record base. The control mode] analyzes those data and adjusts the default
policy based on the stored performance rules in order to develop a new version of the
specific Dss. The next time the user accesses the system, the new version of the
system will be provided. Of course, the new version may be the same as the old one.

-

Design of the Evolution Management System

An evolution management system (EMS) is the expert unit in a self-evolving pss. It
makes recommendation on system evolution to the control mechanism. Based on

T

68 TING-PENG LIANG AND CHRISTOPHER V. JONES

analysis of a user’s usage profile, a default policy and a set of defaults for formulat-
ing a specific version of a pss for the user can be determined. In order to perform this
function, the EMs must keep track of every user’s usage profile. That is, a database of
usage records must be maintained to store related records to identify the usage
pattern of a particular user. In designing such a database, the EMs must consider
issues such as what data should be kept and what patterns can be identified. In
addition, given the usage profile the system also needs a set of rules and performance
measures to analyze the usage data in order to determine appropriate behavior of the
system. In this section, the following major issues in developing an Ems will be
discussed:

1. determining appropriate performance measures,
finding available default policies,
identifying patterns of usage behavior,
designing a database of system usage records, and
developing rules controlling system evolution.

Aol

1. Performance Measures

Although a self-evolving Dss may lead to higher user satisfaction, the most signifi-
cant advantage of the system would be to reduce the effort required to use the system.
In order to accomplish this goal, performance measures are needed to direct the
evolution of the system. They can be either subjective or objective or both. The
selection of appropriate performance measures depends upon the objective of the
system. For example, if we want to develop a system which minimizes the effort
required to execute a job, the number of keystrokes for performing an operation may
be an appropriate measure.

2. Default Policies

For developing a self-evolving Dss, there are three kinds of default policies: fixed
default, dynamic default, and no default. A fixed default policy offers a fixed
operation (e.g., sensitivity analysis) or representation (e.g. a bar chart) to the user
unless the default is changed. In a self-evolving pss, the system default can be
changed by the designer, the user, or the system. A dynamic default policy allows the
default to be changed automatically by the system if some specific conditions are
fulfilled. A no default policy provides no default for operations or representations;
that is, the user mist request any desired action either through a menu or through the
command language.

The advantage of a fixed default policy is that a user can correctly anticipate what
is going to appear. However, the fixed default may not reflect the user’s current
preference or requirements. A dynamic default policy provides flexibility that the
fixed defanlt policy lacks but loses some consistency since the behavior of a system
can change over time. A no default policy allows a user to select the preferred
operation or representation but requires more action and effort to obtain the result.
Sometimes a user may have to traverse four or five levels in a hierarchy of menus

SELF-EVOLVING DECISION SUPPORT SYSTEMS 69

1. Consistent Users —-—- always use the same representation for
a specific operation (no evolution),

e.g. 1 1111111... o time

2. Systematic Users --- use the same representation for a
| specific operation within a certain
time period.
e.g. 333111122 ... ——p Lime

3. Randem Users —-- use different representations randomly

for a specific operation.

e.g. 1 322133312 ... —a Lime
* Note: 1 ... Bar Ehart
2 ... Line chart
3 ... Table

Figure 4. Types of Evolution

before discovering the desired operation. A DsS can adapt itself by changing its
default policy and default value.

3. Patterns of Usage Behavior

The implementation of the self-evolving design approach also requires a DsS to have
the capability to identify users’ patterns of usage in order to determine the appropri-
ate default policy and adjust the system default. Although previous research has tried
to classify users by their cognitive styles or their roles in decision making, different
studies usually draw conflicting conclusions [11, 15, 22]. Therefore, these studies
provide very limited insight from a prescriptive point of view. For the purpose of this
research, a better approach would be to examine the evolution pattern of system use.
There are certainly other alternatives which may lead to different design. A com-
plete discussion on this issue is, however, out of the scope of this research.
From the evolution perspective, patterns of usage behavior can be divided into
three categories: consistent, systematic, and random [13]. A consistent user almost
always prefers the same set of operations or representations in dealing with a
specific problem. A systematic user requires different operations or representations
at different times, but the change is partially predictable. A random user changes
preferences randomly, and the change is entirely unpredictable. Figure 4 illustrates
three sample patterns. The user who always requests a bar chart is a consistent user.
The user who changes preference systematically from a table to a bar chart and then
from a bar chart to a line chart is a systematic user. The user who, at any point in
time, is equally likely to choose a table, bar chart, or line chart is a random user.

70 TING-PENG LIANG AND CHRISTOPHER V. JONES

Whereas different users may demonstrate different types of evolution, an individual
user may also change usage behavior over time [7, 13]. For instance, a random user
may evolve into a systematic user and then, conditioned by the system, become a
consistent user. The identification of a user’s profile is based on data collected in a
predetermined length of time. In terms of model management, a random user may
choose different models to forecast future sales. After several times of use, however,
the user may develop preference for a particular sales forecasting model] and then
evolve into a consistent user.

In order to develop a self-evolving Dss to meet the various types of users, the EMS
needs two components: a database of usage records to track usage patterns and a
knowledge/rule base to determine the appropriate default policy.

4. The Database of Usage Records

Related records of usage must be collected in a database in order to identify the
pattern of usage of a particular user. Since the huge amount of data makes it
prohibitive to collect all usage records, the system designer must first determine
what kinds of usage records are needed to control the evolution of the system, that is,
to determine the evolutionary variables. For example, if the representation format
preferred by a user (e.g., bar chart or pie chart) is expected to change over time, then
the designer should treat the representation format as an evolutionary variable in
designing the Dss, and the database of usage records should be designed to keep those
data. '

Because the identification of evolutionary variables also determines what features
of the system will be able to evolve, it has crucial effects on the validity of the system.
Therefore, the designer must work very carefully with the help of the user at this
stage.

After determining the evolutionary variables, the designer must design a database
structure to maintain all usage data related to the identified evolutionary variables.
All principles for developih_g a database management system are applicable to the
design of this database; all functions for data management, including data storage,
update, and retrieval, must also be implemented in this database.

5. A Knowledge/Rule Base for Determining Actions

The knowledge/rule base contains knowledge about when and how a system should
evolve. A rule is usually used to connect a given situation with appropriate actions
under that situation. It provides a natural way for describing processes driven by a
complex and rapidly changing environment. An example would be, *‘If humidity is
greater then 99% then it is going to rain.””

A set of rules specifies how the system should react to the changing data without
requiring detailed knowledge about the flow of control. These rules can be divided
into two categories: domain rules and meta-rules. Domain rules represent knowl-
edge pertinent to a particular application, whereas meta-rules describe how domain
rules should be used or modified. For example, ‘‘If the expected number of key-

=

SELF-EVOLVING DECISION SUPPORT SYSTEMS 71

strokes of a default policy is less than 1/2 then the default policy should be adopted”’
is a domain rule; but ““If more than one rule applies to a particular situation then the
system should use them in descending order” is a meta-rule. In developing a self-
evolving mechanism, the system designer must develop domain rules in the rule base
since many artificial intelligence or expert systems tools provide meta-rules for
tracing the execution of the knowledge base. For example, PROLOG provides back-
tracking capabilities. This can save much time and effort. For more discussion,
please see [23].

Assuming the usage records have been collected, four kinds of domain rules are
needed to analyze those records and determine the appropriate default policy:

(1) rules for identifying patterns of usage,

(2) rules for measuring performance, _

(3) rules for determining appropriate default policy, and

(4) rules for assigning appropriate time for evolution.

1. Rules for Identifying Relevant Usage Records in Order to Determine Patterns
of Usage. This kind of rule is designed to identify the usage profile of a particular
user. It includes rules for identifying patterns of usage and rules determining how to
use those rules for identifying patterns of usage. An example would be, ‘“The
analysis of the usage pattern should be based on the ten most recent uses of the
system.’’

2. Rules for Computing the Performance of Various Default Policies. This set of
rules determines how performance must be measured. A typical rule here would be,
"“The performance of a default policy is measured by the expected number of
keystrokes required to perform an operation.”’ .

3. Rules for Determining Appropriate Actions. This set of rules specifies condi-
tions under which a default policy is applicable—for example, “‘If the expected
number of keystrokes of a default policy is Iess than 0.5 then take the default policy
as a candidate.”’

4. Rules for Determining an Appropriate Time for Evolution. If a éystem evolves
too frequently, the user may be confused by the changes and hence not trust it.
Therefore, rules are needed to determine when the evolution should take place. The
determination of this kind of rule must take into account not only system perfor-
mance but also system consistency. An example would be, ‘“The system evolves
every time the system is initiated, but collects records of usage throughout the time
the Dss is used.”’ ‘

An example that illustrates different rules and the process of the self-evolving
design will be discussed in the next section.

Applications of the Self-evolving Design

The self-evolving design can be applied to many areas. In this section, the authors
describe three of these promising applications for decision support: intelligent user
interface design, model management system design, and pss generator design. In

72 TING-PENG LIANG AND CHRISTOPHER V. JONES

fact, this approach can also be used to develop an adaptive expert system- which
interacts with different users in different ways.

1. Intelligent User Interface Design

The user interface of a system is the channel through which a user communicates
with the system. Most current information systems either have a fixed user inter-
face, which interacts with users by a predetermined format and sequence, or provide
menus to users and allow users to select the preferred format and presentation
sequence [22]. They have little capability of identifying different users, not to
mention learning the changes of a user’s preference.

In the real world, if a Chief Executive Officer (CEO) needs a sales report
comparing sales for the past ten years, he does not have to tell his secretary whether
he prefers a table, a pie chart, or a bar chart. However, if he works with a traditional
Dss, he will either be given the same report format every time he uses the system or
will have to specify many parameters required for generating a new format. Neither
way can be considered satisfactory.

By applying the previously described self-evolving mechanism to the user inter-
face design, the system will be able to identify a particular user’s preference on
representation formats and perform intelligent interaction by analyzing the user’s
previous usage records. Examples of considering user’s behavior for the user inter-
face design can be found in [5, 13], although the approach described in [5] still
requires human involvement in order to analyze usage records.

2. Model Management System Design

Model management systems are focused on facilitating the management of decision
models. Since different users may prefer different models for solving a problem and
different models may have different validities in different situations, model selec-
tion is one of the most important issues in model management [14]. Applying the
~ self-evolving approach to model management system design can incorporate a user’s
revealed preference into the model selection process and increase the usefulness of
the system.

For example, manager A prefers using the regression model to forecast future
sales, whereas manager B trusts the exponential smoothing model. In a self-evolving
model management system, the system will consider this fact and provide appropri-
ate sales forecasting models to the managers in case they want to forecast future sales
or want to work with the system to develop a new model involving the sales
forecasting model.

3. DSS Generator Design _

Facilitating the development of Dss generators is one of the primary goals of the self-
evolving design approach. A Dss generator provides an environment for developing
specific Dss which support various decisions. Through integrating the self-evelving

|/‘ ——__-\

SELF-EVOLVING DECISION SUPPORT SYSTEMS 73

capabilities, a DSS generator will be able to provide different versions of a specific
Dss to different users. This can significantly reduce the cost for developing many
separate specific Dss and encourage different users to share a system.

Although the self-evolving mechanism provides a general approach to system
evolution for Dss generators, the user’s usage data are associated with a specific pss.
In other words, those data are problem-dependent. We cannot use the data collected
from a sales forecasting Dss to determine the appropriate representation format for a
cash flow analysis Dss. Each specific Dss should have its own database of usage
records. The pss generator, however, provides functions for analyzing the data and
tracing the evolution of the system.

An Ilustrative Example

IN ORDER TO ILLUSTRATE the process of self-evolving design, the development of
a Dss that provides monthly sales forecasts to the decision maker is presented in this
section. The first step for designing this system is to determine appropriate perfor-
mance measures and evolutionary variables, that is, characteristics that will change
over time. After identifying the evolutionary variables, the designer must develop
rules to be used to analyze the usage records and to set the appropriate default policy.
Finally, the designer implements the system.

Performance Measures

Suppose the user wants a system that minimizes the actions required to produce the
desired information; that is, the objective of the design is to reduce the effort in
using the system. A proper performance measure might be the expected number of
actions (selections or keystrokes) required to produce the desired information.
Assume further that two variables are evolutionary: (1) whether or not the user

‘wants to perform sensitivity analysis, and (2) the representation format preferred by

the user.

After identifying the performance measure of the system, the designer decides
that the performances of various default policies will be measured based on the five
most recent uses of the system.

Policies and Rules

The next step is to determine proper default policies and rules. The following three
default policies will-be adopted as the domain of default policies in this example.
Policy 1: Fixed menus will be provided for requesting sensitivity analysis and
representation format (no default policy).
Policy 2: Sensitivity analysis will be performed automatically and tables will

ST

(o

74 TING-PENG LIANG AND CHRISTOPHER V. JONES

iule 1: 1F (For all policy {: Performance(i) >= 1/2) THEN
(Put policy 1 into Candidate_default_policy)

Rule 2: IF (There exists a policy 1i: Performance(i) {1/2) THEN
(Put policy 1 into Landidate_default_policy)

Rule 3: IF size(Candidate default policy)’» 1 THEN
Default policy = policy with minimum performance

Rule 4: IF more than one policy fulfills Rule 3 THEN
default policy = policy with minimum ID number

Where:

t

i: Tdentification (ID) number of a default policy.

Performance(i): The expected number of keystrokes if
policy i is adopted as the default policy.

Candidate default policy: A set which contains ali
default policies that fulfill Rule 1 and Rule 2.

Size (Candidate default policy): The number of elememts
in the Candidate default policy.

Figure 5. Rules Used in the Nlustrative Example

present the output (fixed default policy).

Policy 3: The decisions as to whether the sensitivity analysis will be performed
and whether the representation format will be changed are based on previous usage
records (dynamic default policy).

Following the specification of the default policies, the designer determines that
four rules are appropriate for adjusting the default policy, as in Figure 5.

Rule 1 means if, for all default policies in the domain, the expected number of
keystrokes required to produce the information is greater than or equal to 1/2, then
the default policy of the system will be policy 1, menu selection. In this example the
hurdle number in the rule (1/2) is arbitrary. It means that the user may have to select
the operation or representation every other time he accesses the system. In other
words, the default policy with performance of 1/2 is expected to have a probability of
0.5 in correctly predicting the user’s preference. Since the usage data are problem-
dependent, different performance measures and hurdle numbers may be used in
different systems.

Rule 2 means if there is a default policy, i, with an expected number of required
actions less than 1/2, therrit will be considered as a candidate for the new system
default. Rule 3 means that the candidate default policy with the best performance
(i.e., the policy with minimum expected keystrokes) will become the new system
default if more than one policy is qualified by rule 2. Rule 4 means if more than one

(/’\

-

SELF-EVOLVYING DECISION SUPPORT SYSTEMS 75

Manager A Manager B
Sensitivity Analysis Y, Y, Y, ¥, Y Y, N, N, ¥, N
Representation Format| B, B, T, T, T ?, -, -, B, -

Note: Y = Yes, N = Neo,
T = Table, P = Pie chart, B = Bar chart.

Select none

1
il

Figure 6. Sample Usage Records

policy fulfills rule 3 then the new system default will be the policy with the smallest
policy identification number. In this example, we set menu selection (no default
policy) to be policy 1, fixed default policy to be policy 2, and dynamic default policy
to be policy 3. This means that given the same performance we prefer menu
selection to a fixed defauit policy and prefer a fixed default policy to a dynamic
default policy. In the Appendix, a PROLOG implementation of this self-evolving
mechanism is illustrated. It shows how these rules determine the appropriate default
policy and default value.

System Behavior

If the usage data of managers A and B for each of their previous five usages of the Dss
are as shown in Figure 6 then the performances of various policies after analyzing
the usage records are as shown in Figure 7. Each value in Figure 7 is the expected
number of selections the user has to make given the policy and the user’s pattern of
usage. For example, the performance of the fixed default policy for sensitivity
analysis is equal to zero for manager A and 2/5 for manager B. In other words,
manager A should require no action since the system will perform sensitivity
analysis automatically every time he accesses the system, but manager B is expected
to take action to bypass the execution of sensitivity analysis two times out of five if
the fixed default policy is adopted.

According to the previously specified performance rules, the pss would behave as
follows: the system adopts the fixed default policy for both the sensitivity analysis
(default = yes) and the representation format (default = table) when manager A is
on-line. That is, the Dss will perform sensitivity analysis and report the results
autornatically in tabular form. If manager B uses the system, however, because the
fixed default policy (default = no) is considered appropriate in performing sensitiv-
ity analysis, the system will not perform sensitivity analysis unless manager B asks it
to do so. If manager B requests sensitivity analysis, the system will provide a menu
allowing manager B to indicate the preferred representation format, because the no
default policy is considered appropriate here.

(Y

76 TING-PENG LIANG AND CHRISTOPHER V. JONIS

Manager A Manager B
Sensitivity Analysis
Fixed Default 0 2/5
Dynamic Default 1/5 4/5
No Default 1 1
Representation Format
Fixed Default 2/5 i/2
Dynamic Default 2/5 1
No Default 1 1

Figure 7. Performance of Various Policies

If manager B’s behavior evolves to the same pattern as that of manager A’s, then
the Dss provided to manager B will automatically change the default policy and
evolve to a system identical to the one currently provided to manager A. Although
the example is highly simplified, it does demonstrate the mechanism for self-evolu-
tion and the behavior of a self-evolving system. A more sophisticated system would
require more evolutionary variables and more complex performance rules.

Conclusion

THE PAPER HAS PRESENTED a self-evolving approach for developing decision
support systems. This approach would build learning capabilities into a Dss to offset
some drawbacks of current design approaches such as the scarcity of user’s and
designer’s time and the lack of adaptability to users’ behavior. Figure 8 summarizes
the differences among the sDLC approach, the user-involved evolutionary approach,
and the self-evolving design we have described [see also references 4, 5, 6, 8, 9, 11,
17, 19, 20]. The evaluations illustrated in Figure 8 reflect relative rather than
absolute measures. For example, although the user involvement is important to all
three approaches, the degree of user involvement is relatively low in the spic
approach compared with the degree in the evolutionary design and the self-evolving
design.

From the cost-benefit point of view, the initial development cost for adopting this
approach may be higher than that of the user-involved evolutionary design because a
self-evolving mechanism must be built. After the system has been developed, how-

SELF-EVOLVING DECISION SUPPORT SYSTEMS 77

FACTORS SDILC EVOLUTTONARY SELF-EVOLV ING
1. Tnitial development High Low Medium
cost
2. Bvolutionary cost High Medium Low
3. Interference with the Low High Medium

decision process
4. System [lexibility Low Medium High

5. User's control over Low High Medium
the system

6. User involvement Low High Medium
reguired

7. Encouraging system Low Low High
sharing

Note: SpLC = system development life cycle.

Figure 8. A Comparison of Various Approaches

ever, the adaptive cost will be lower, the flexibility of the pss will be higher, and the
interference in the user’s decision process will be less. In addition, since the self-
evolving approach tailors the system to fit different users’ preferences, it would
encourage system sharing and hence reduce the possibility of information inconsis-
tency that may have been generated by many user-developed systems. Although
empirical study for comparing different approaches is needed to support these
arguments, successful implementation of this approach could shed much light on the
development of a useful pss.

The self-evolving approach presented in this paper has several limitations, which
also indicate promising areas for future research. First, users may have a strong
desire to control a system and cognitively do not like a system with self-evolving
capabilities. Second, the validity of the default adjustment model is crucial to the
success of a self-evolving Dss. If the system evolves in an unexpected, undesigned
way, user satisfaction will diminish. Therefore, lack of knowledge of human deci-
sion processes may significantly reduce the usefulness of this approach. The prog-
ress n artificial intelligence and cognitive sciences will be able to offset this
limitation and hence increase the value of this approach. Third, the implementatjon
of the approach requires highly intelligent designers (probably with the help of the
user) to design the self-evolving mechanism in order to control the evolution of the
system. Even with the limitations mentioned, the self-evolving approach still has
good potential in many application areas, including the development of pss gener-
ators and model management systems. ‘

=

78 TING-PENG LIANG AND CHRISTOPHER V. JONES

Appendix: A PROLOG Implementation

1. Description

The program is composed of the following four functions:

(1) retrieval of usage data,

(2) analysis of usage data,

(3) determination of default, and

(4) report of the default.

Assuming that the usage data represented by the predicate ‘‘data’ are already
available in the database, the first step of the mechanism is to retrieve the usage data
stored in the database. Then, the predicate ‘‘analyze’’ analyzes the usage data of the
user. A predicate is similar to a subroutine in a high-level language. The predicate
“‘analyze’’ computes the performance of the fixed default policy by activating the
predicate ‘‘fixed__default’’ and analyzes the performance of the dynamic default
policy by activating the predicate ‘‘dynamic__default.”’ Finally, the predicate ‘‘se-
lection’’is activated to select the most appropriate default policy, and the predicate
“‘report’’ reports the result. Other predicates in the program are subroutines of the
predicates described above.

To use the system, the user activates the predicate ‘‘default.”” If the user’s usage
data are available in the database, the system will analyze the data and report a
proper defanlt. For example, if the user enters ‘‘default(manager._a)”’, then the
system will analyze the usage data of manager A in the database and generate the
most appropriate default and its expected performance, which is the fixed default
policy with the expected number of keystrokes equal to zero.

2. A PROLOG Program Listing

/* Sample database */

data(manager_a.[yy.yyy).
data{manager__b,[y,n,n,y,n]).

{* Main Program */

default(User):-
data(User,Data),
analyze(Data,Default__candidates),
select{Default__candidates,Best),
report(User,Best). -

default(User):-
nl,write{’ Sorry—usage data not available 11"},
nl,nl,!.

~

SELTF-EVOLVING DECISION SUPPORT SYSTEMS

analyze(Data,Result):-
fixed__default(Data,Candidacy__1),
dynamic__default(Data,Candidacy__2),
append([Candidacy__1],[Candidacy__2],Resuit1),
delete([],Result1,Result).

select(Default__candidates,Best):-
list__length(Default__candidates, L),
L=1,
first(Best,Default__candidates).
select(Default__candidates, Best):-
list__length(Default__candidates,L),
L=2,
first(Fixed,Default__candidates),
delete__head(Fixed, Default__candidates,Default__candidates__2),
first(Dynamic,Default__candidates__2),
compare(Fixed,Dynamic,Best).
select([],[menu,no,1.0]).

compare(Fixed,Dynamic,Best):-
third(P2,Dynamic),
third(P1,Fixed),
P1>P2,
append(Dynamic,[],Best).
compare(Fixed,Dynamic,Best):-
append(Fixed,[],Best).

report(User,Best):-
write{’ The optimum default policy, default value, and *),
nl,write(’ expected keystrokes for *),write(User),
write(” = “),nl,nl,
write(’),
write(Best),nl,nl.

fixed__default(Data,Candidacy__1):-
list__length(Data,L),L >0,
count(Data,L,Performance),
candidate__1(Performance,Candidacy__1).
fixed__default(Data,[]).

count(f].—.[]).

count(Data,L_,Performance):-
first(F1,Data),list__length(Data,L1),
delete(F1,Data,Data___1),

79

e

80 TING-PENG LIANG AND CHRISTOPHER V. JONES

list__length(Data___1,L.2),
Plist — (L1 —L2)/L,

P1 > 0.5,
count(Data__1,L,Performance).

count{Data,L,Performance):-
first(Default__value,Data),list__length{Data,L1),
delete(Default__value,Data,Data__1),
list__length(Data__1,L.2),
Perfis1 — (L1 — L2}/ L,
append([Default__valug],[Perf],Performance).

candidate__1(Performance,Candidacy__1):-
list__length(Performance,L),!,
L>0,
append([fixed],Performance,Candidacy__1).
candidate__1([].[]).

dynamic__default(Data,Candidacy.__2):-
compute(Data,Performance),
candidate__2(Performance,Candidacy__2).

dynamic__default(Data,[]).

compute(Data,[Default__value,Performance}):-
list__length(Data,L},L >0,
keystroke(Data,Key),
P is Key/L,
P<0.5,

first{Default__value,Data),

Performance is P.

compute(__,[]).

keystroke(Data,Key):-
first(F1,Data),
delete__head(F1,Data,Data__1),
match__head(F1,Data__1),
keystroke(Data__1,Key).

keystroke(Data,Key):-
first(F1,Data),
delete__head(F1,Data,Data__1),
not match(F1,Data-_1),
keystroke(Data__1,Key1),
Key is Key1 + 1.

keystroke([],0):-.

.

SELF-EVOLVING DECISION SUPPORT SYSTEMS 81

candidate__2(Performance,Candidacy__2):-
list__tength(Performance,L),!,
L>0,
append([dynamic],Performance,Candidacy__2).
candidate_2([].1]).

/* Utilities */
first(X,[X | Anything]).
third(X,[A,B,X]).

append([],List__1,List__1).
append([A__head | Tail__1],List_2,[A__head|Tail_1__then__list__2]):-
append(Tail__1,List_2,Tail__1__then__list__2).

delete__head(Element, [Element | Tail], Tail):-.

delete(__,[1.[).

delete(Element, [Element | Tail], List1):-!,
delete(Element, Tail, List1).

delete(Element,[Any| Tail1],[Any | Tail2]):-
delete(Element, Tail1,Tail2).

list__tength([],0).
list__length([X | Tail],Length):-list__length(Tail,K),
Length is K+ 1.

match__head(Element,[Element | Anything]).

REFERENCES

1. Alavi, M., and Henderson, J. C. An evolutionary strategy for implementing a decision
support system. Management Science, 27, 11 (1981), 1309-1323.

2. Alavi, M., and Weiss, I. R. Managing the risks associated with end-user computing.
Journal of Management Information Systems, 2, 3 (Winter 1985-86), 5-20.

3. Alter, S. Transforming DSS jargon into principles for DSS success. In Young, Dono-
van, and Keen, Peter G. W., eds. DSS-81 Transactions, Execucom System Corp., 1981, 8-
27.

4. Davis, G. B. Caution, user-developed DSS can be dangerous to your organization.
Proceedings of the Fiftéenth Hawaii International Conference on System Sciences, Honolulu,
1982, 750-763.

5. Good, M. D., et al. Building a user-derived interface. Communications of the ACM,
27, 10 (1984), 1032-1043.

6. Hiltz, S. R., and Turoff, M. Office augmentation systems: The case for evolutionary

P

=

82 TING-PENG LIANG AND CHRISTOPHER V. JONES

design. Proceedings of the Fifteenth Hawaii International Conference on System Sciences,
Honolulu, 1982, 737-749,

7. Hurst, E. G., Jr. The role of humans in decision support systems. Decision Sciences
working paper 78-02-01, The Wharton School, University of Pennsylvania, 1978.

8. Hurst, E. G., Jr., et al. Growing DSS: A flexible, evolutionary approach. In Bennett,
3. L., ed. Building Decision Support Systems. Reading, Mass. . Addison-Wesley, 1983, 111-
132.

9, Keen, P. G. W. Adaptive design for decision support systems. Database, 12, 1-2
(1980, 15-235.

10. Keen, P. G. W., and Gambino, T. J. Building a DSS: The mythical man-month
revisited. In Bennett, J. L., ed. Building Decision Support Systems. Reading, Mass.: Addi-
son-Wesley, 1983, 133-172.

11. Keen, P. G. W., and Scott Morton, M. S. Decision Support Systems: An Organization-
al Perspective. Reading, Mass.: Addison-Wesley, 1978.

12. Konsynski, B. R. Advances in information systems development. Journal of Manage-
ment Information Systems, 1, 3 (Winter 1984-85}, 5-32.

13. Liang, T. P. A self-evolving user interface design for decision support systems.
Proceedings of the Seventeenth Hawaii International Conference on System Sciences, Hono-
lulu, 1984, 548-557.

14. Liang, T. P. A graph-based approach to model management. Proceedings of the
Seventh International Conference on Information Systems, San Diego, 1986.

15. Mason, R. O., and Mitroff, I. I. A program for research on management information
systems. Management Science, 19, 5 (1973), 475-487.

16. McLean, E. R. End-users as application developers. MIS Quarterly, 3, 4 (1979), 37~
46.

17. Moore, J. H., and Chang, M. G. Meta-design considerations in building decision
support systems. In Bennett, J. L., ed. Building Decision Support Systems. Addison-Wesley,
Reading, Mass.: 1983, 173-204.

18. Rich, E. Artificial Intelligence. Englewood Cliffs, N. J.: Prentice-Hall, 1983.

19. Rockart, J., and Lauren, F. The management of end user computing. Communications
of the ACM, 26, 10 (1983), 776-784.

20. Smyder, C. A., and Cox, J. F. A dynamic systems development life cycle approach: A
project management information system. Journal of Management Information Systems, 2, 1
(Summer 1985), 61-76.

21. Sprague, R. H., Jr. A framework for the development of decision support systems.
MIS Quarterly, 4, 4 (1980), 1-26.

22. Sprague, R. H., Ir., and Carlson, E. D. Building Effective Decision Support Systems.
Englewood Cliffs, N. J.: Prentice-Hall, 1982.

23. Waterman, D. A. A Guide to Expert Systems. Reading, Mass.: Addison-Wesley, 1986.

24. Watson, H. I., et al. An investigation of DSS developmental methodology. Proceed-
ings of the Seventeenth Hawaii International Conference on System Sciences, Honoluluy,
1984, 515-519.

